
Journal of Corrosion and Materials
www.corromat.com

J. Corros. Mater. 47 (2022) 1–11
https://doi.org/10.61336/jcm2022-1

Approximation Method for Finding Fixed Point of Generalized Suzuki Nonexpansive Map-
pings on Hyperbolic Spaces

A. B. Henry1,*

1Department of Computer Sciences, The University of Melbourne, Melbourne, Australia

(Received: 12 March 2022. Received in revised form: 20 August 2022. Accepted: 23 August 2022. Published online: 30 December 2022.)

Abstract

In this article, we aim to prove strong and ∆-convergence theorems of Noor iterative process for generalized Suzuki
nonexpansive mappings (GSNM) on uniform convex hyperbolic spaces. Due to the richness of uniform convex hyperbolic
spaces, the results of this paper can be used as an extension and generalization of many famous results in Banach spaces
together with CAT (0) spaces.
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1. Introduction

In 2008, Suzuki in [1] introduced a family of single valued mappings as:

Definition 1.1. Let us consider a Banach space B and a mapping F on the subset S of B satisfying following condition:

1

2
∥u− Fv∥ ≤ ∥u− v∥ =⇒ ∥Fu− Fv∥ ≤ ∥u− v∥, (1)

∀ u, v ∈ S.
The mapping F work as intermediate class of mapping between non-expansiveness and quasi-non-expansiveness as given

below:

Definition 1.2. Assume S ⊂ B, where S is nonempty and B is a Banach Space. Then F : S → S is non-expansive if

∥Fu− Fv∥ ≤ ∥u− v∥ ∀ u, v ∈ S.

Definition 1.3. Assume S ⊂ B, where S is nonempty and B is a Banach Space. Then F : S → S is quasi-nonexpansive if

∥Fx− ρ∥ ≤ ∥x− ρ∥ for every ρ ∈ FP (F) and ∀ x ∈ S, moreover FP (F) represents fixed point set of F.

Example 1.1. Let F on [0, 5] is defined by;

Fx =

{
0, x ̸= 5;
1, x = 5.

Then clearly F is not non-expansive but it satisfies condition (1).

Example 1.2. Let F on [0, 5] defined by

Fx =

{
0, x ̸= 5;
2, x = 5.

Then F fails to fullfill condition (1), however F is quasi-non-expansive and FP (F) = {0} ≠ ϕ.

Suzuki [1] done significant work in showing the presence of the fixed point and convergence theorem in Banach spaces

equipped with mapping satisfying condition (1).

In [2] Dhompongsa et al. enhanced the conclusions of Suzuki [1]with different conditions on Banach spaces and obtained

a fixed point result in these spaces equipped with mapping satisfying condition C.

Nanjaras et al. [5] rendered sundry characterization of existing fixed point results equipped with mappings satisfying

condition C in the skeleton of CAT(0) spaces. There is need to generalize the result of Suzuki type nonexpansive mappings

which was efficiently done by Karapınar et al. [2] in 2011 as given bellow.
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Definition 1.4. Assume S ⊂ B , where S is nonempty and (B, ρ) represents metric space, equipped with mapping F : S → S
and if

1

2
ρ(Fu,Fv) ≤ ρ(u, v) ⇒ ρ(Fu,Fv) ≤ θ(u, v),

where θ(u, v) = max{ρ(u, v), ρ(u,Fu), ρ(v,Fv), ρ(u,Fv), d(v,Fu)} ∀ u, v ∈ S. Then F is considered to be a Suzuki-Ciric

mapping (SCC) [3].

Definition 1.5. Assume S ⊂ B , where S is nonempty and (B, ρ) represents metric space, equipped with mapping F : S → S
and if

1

2
ρ(Fu,Fv) ≤ ρ(u, v) ⇒ ρ(Fu,Fv) ≤ ν(u, v),

where ν(u, v) = max
{
ρ(u, v), ρ(u,Fu)+ρ(v,Fv)

2 , ρ(u,Fv)+ρ(v,Fu)
2

}
∀ u, v ∈ S.

Then F is considered to be a Suzuki-KC mapping (SKC).

Definition 1.6. Assume S ⊂ B , where S is nonempty and (B, ρ) represents metric space, equipped with mapping F : S → S
and if

1

2
ρ(Fu,Fv) ≤ ρ(u, v) ⇒ ρ(Fu,Fv) ≤ ρ(u,Fu) + ρ(v,Fv)

2
,

∀ u, v ∈ S.
Then F is considered to be a Kannan-Suzuki mapping (KSC).

Definition 1.7. Assume S ⊂ B , where S is nonempty and (B, ρ) represents metric space, equipped with mapping F : S → S
and if

1

2
ρ(Fu,Fv) ≤ ρ(u, v) ⇒ ρ(Fu,Fv) ≤ ρ(v,Fu) + ρ(u,Fv)

2
,

∀ x, y ∈ S.
Then F is considered to be a Chatterjea-Suzuki mapping (CSC).

Clearly every nonexpansive mapping is SKC, but the converse may not true [3].

Example 1.3. Set F on [0, 6] by:

Fx =

{
0, x ̸= 6;
1, x = 6.

Clearly F is not non-expansive but F fullfill both the SCC and SKC conditions.

Example 1.4. Set R on [0, 6] by:

Sx =

{
0, x ̸= 6;
3, x = 6.

Clearly R does not fulfill the SKC condition, moreover R is quasi-nonexpansive and FP (R) ̸= ϕ.

Example 1.5. Let the space B = (0, 0), (0, 1), (1, 1), (1, 2) with l∞ metric:

ρ((u1, v1), (u2, v2)) = max{|u1–v1|, |v1–v2|}.

Set F on B by:

Fx =

{
(1, 1), if(u, v) ̸= (0, 0);
(0, 1), if(u, v) = (0, 0).

Clearly F fullfill SKC’s condition. Assume that (u, v) = (0, 0) and (u, v) = (1, 1), then

1

2
ρ(F(0, 0), (0, 0)) ≤ ρ((0, 0), (1, 1))

and

ν((0, 0), (1, 1)) = max{ρ((0, 0), (1, 1)), 1
2
[ρ(F(0, 0), (0, 0)), ρ(F(1, 1), (1, 1))]

,
1

2
[ρ(F(1, 1), (0, 0)), ρ(F(0, 0), (1, 1))]}

= 1,

thus

ρ(F(0, 0),F(1, 1)) = 1 ≤ ν((0, 0), (1, 1)) = 1.

Clearly SKC condition is fulfilled by other points in B.
Moreover FP (F) = (1, 1) ̸= ϕ, and FP (F) is convex and closed.
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This is significant to understand the different iterative process adapted by several writers in locating fixed points of the

space equipped with nonlinear mappings, moreover solution of their operator equations.

The iteration process introduced by Mann (see [6, 7]) is explained below:

Assume S ⊂ B, where S is convex and B is Banach Space, and let F : S → S be a nonlinear mapping, for every point

u0 ∈ S, the sequence un in S is manufactured by

un+1 = (1− γn)un + γnFun = M(un, γn,F), n ∈ N,

is called Mann Iterative process.

It should be noted that γn represents a real sequence in [0, 1] which fulfill the conditions given below:

(M1): 0 ≤ γn < 1,

(M2): limn→∞ γn = 0,

(M3):
∑∞

n=1 γn = ∞.

one can replace M3 by
∑∞

n=1 γn(1− γn) = ∞ in other applications.

The Ishikawa introduced an iteration process which improves the Mann iteration process (see [6, 8]) as follows:

Setting S,B, and F as in (M), for every point u0 ∈ S, the sequence un in S is manufactured by:

un+1 = (1− γn)un + γnF((1− αn)un + αnFun), n ∈ N,

is called Ishikawa iterative process, where γn and αn are sequences in [0, 1] which satisfy the following conditions:

(I1): 0 ≤ γn ≤ αn < 1,

(I2): limn→∞ αn = 0,

(I3):
∑∞

n=1 γnαn = ∞.

Some authors switch condition (I1)0 ≤ γn ≤ αn < 1, with the general condition (I
′

1)0 < γn, αn < 1, and notice that, with

this switching, the iterative process manufactured by Ishikawa (I) is a spontaneous generalization of the iterative process

manufactured by Mann (M). It is perceived that, if the iterative process manufactured by Mann (M) is convergent, then

the iterative process manufactured by Ishikawa (I) through condition (I
′

1) is also convergent, with appropriate conditions

on γn and αn.

Recently, Agarwal et al. [14] broached the S-iteration process which is independent of above two iterative process as

follows:

For S ⊂ B, where S is convex and B is linear space, and let F : S → S be a mapping, for every point u0 ∈ S , the iterative

sequence un in S is manufactured by S-iteration process is given below:{
un+1 = (1− γn)un + γnFun

vn = (1− αn)un + αnFun, n ∈ N,

where γn and αn are sequences in (0, 1) filling the condition:

∞∑
n=0

γnαn(1− αn) = ∞.

It is perceived that both the S-iteration process and the Picard has same rate of convergence, which is rapid than the

iteration process manufactured by Mann equipped with contraction mapping (see [6, 14,15]).

We use the definition of a hyperbolic space given in [17], [18] and [19], because the definition given by Reich and

Shafrir [24] is a bit more repressive. The hyperbolic spaces in the Reich and Shafrir sense [24] is unbounded by taking

family of metric lines M instead of metric segments. Every subset of hyperbolic space is hyperbolic itself by the definition

which we consider and it gives convergence result too.

Definition 1.8. Consider the metric space (B, ρ) equipped with convex mapping Ω : B2 × [0, 1] then the triplet (B, ρ,Ω) is

said to be hyperbolic space if it fulfills the conditions given below:

(Ω1) : ρ(x,Ω(u, v, γ)) ≤ γρ(x, u) + (1− γ)d(x, v);

(Ω2) : ρ(Ω(u, v, γ),Ω(u, v, α)) = γ − α|ρ(u, v);
(Ω3) : Ω(u, v, γ) = Ω(v, u, 1− γ);

(Ω4) : ρ(Ω(u,w, γ),Ω(v, y, γ)) ≤ (1− γ)ρ(u, v) + γρ(w, y),

∀ u, v, x and y ∈ B and γ, α ∈ [0, 1].

Takahashi manufacture the convex metric space [20], in which the triplet (B, ρ,Ω) fulfills Ω1. Goebel and Kirk in [22]

manufacture their own definition of above space, where triplet (B, ρ,Ω) filling conditions (Ω1)-(Ω3).

Reich and Shafrir [24] and Kirk [25] manufactured their definition of hyperbolic space by using ’condition III’ of Itoh [23]

which is equivalent to Ω4.
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The class of hyperbolic spaces are rich in nature and contains different spaces, manifold of the Hadamard type and

convex subsets thereof, for more see [26], and the CAT(0) spaces along with Ω as the unique geodesic path between any

two points in B. Bruhat and Tits [11] shows that hyperboloic space is a CAT (0)-space if and only if it fulfills the so called

CN-inequality.

Wataru Takahashi [19] introduce the notion of convex set S of hyperbolic spaces B if it satisfies the following condition

Ω(u, v, γ) ∈ S ∀ u, v ∈ S and γ ∈ [0, 1]. We often use the notion (1− µ)u⊕ µv for Ω(u, v, µ),∀ u, v ∈ B and µ ∈ [0, 1].

Assume ∀ u, v ∈ B and µ ∈ [0, 1]. Setting

ρ(u, (1− µ)u⊕ µv) = µρ(u, v)

and

ρ(v, (1− µ)u⊕ µv) = (1− µ)ρ(u, v)

which is considered to be more general setting of a convex metric space [20,21].

A hyperbolic space (B, ρ,Ω) is uniformly convex in the sense of [16] if, for any q > 0 and ϵ ∈ (0, 2], there exists δ ∈ (0, 1]

such that, ∀ c, u, v ∈ B,
ρ(

1

2
u⊕ 1

2
v, b) ≤ (1− δ)q,

provided ρ(u, c) ≤ q, ρ(v, c) ≤ r, and ρ(u, v) ≥ ϵq.

Setting η : (0,∞)× (0, 2] → (0, 1] equipped with δ = η(q, ε) such that q > 0 and ε ∈ (0, 2] then η is said to be modulus of

uniform convexity. Clearly with this setting if q decreases for stationary ε then η is monotone.

The aim of this article is to prove strong convergence and ∆−convergence of Noor iterative process for GSNM in uniform

convex hyperbolic spaces. Due to the richness of these spaces our results can be used as an extension and generalization of

famous results in Banach and CAT (0) spaces (see [2-7,16,22,29-31]).

2. Preliminaries

First, we recall the notion of ∆-convergence and few of its primary characteristics.

Assume S ⊂ B, where S is nonempty and (B, ρ) represents metric space and let un be any sequence in Moreover, diam(S)
signify the diameter of S. Set a continuous functional rb(., un) : B → R+ as

rb(u, {un}) = lim
n→∞

sup ρ(un, u), u ∈ B.

The asymptotic radius of un is signified by rb(S, {un}) in connection with S and is defined to be the infimum of rb(., un)

over S.
Furthermore, if

rb(w, {un}) = inf{(u, {un}) : u ∈ S},

then the point w ∈ S signify as an asymptotic center of the sequence un in connection with S.
AC(S, un) signifies the set of all asymptotic centers of un in connection with S, which is the set of minimizers of the

functional r(, {un}) and it can be empty or a singleton or contain infinitely many points.

The notions rb(B, un) = rb({un}) and AC(B, {un}) = AC({un}), respectively, signifies asymptotic radius and asymptotic

center taken in connection with B.
Clearly, for u ∈ B, rb(u, {un}) = 0 if and only if limn→∞ un = u.

Moreover every sequence which is bounded has a unique asymptotic center in connection with each closed convex subset

in uniformly convex Banach spaces and even CAT(0) spaces.

The following lemma is due to Leuştean [31] and we know that this property also holds in a complete uniformly convex

hyperbolic space.

Lemma 2.1. [31] Assume S ⊂ B, where S is nonempty , moreover S is also closed and convex. Furthermore, the triplet

(B, ρ,Ω) represents uniformly convex hyperbolic space, which is complete and having η as monotone modulus of uniform

convexity. Then every sequence {un} in B, which is bounded has a unique asymptotic center referring S as defined above.

Definition 2.1. Let B be hyperbolic space and un is any sequence in B. If u is the unique asymptotic center of every

subsequence tn of un then {un} is considered to be ∆− convergent to u ∈ B. In such a case, we set ∆− limnun = u and

we refer u the ∆− limit of un.
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Lemma 2.2 (33). The triplet (B, ρ,Ω) represents uniformly convex hyperbolic space having η as monotone modulus of

uniform convexity. Moreover assume u ∈ B and {sn} be a sequence in [c, d] with 0 < c, d < 1. If {un} and {vn} are any

two sequences in B so that

lim supn→∞ ρ(un, u) ≤ e,

lim supn→∞ ρ(vn, p) ≤ e,

limn→∞ ρ(Ω(un, vn, sn), u) = e,

for some e ≥ 0, then limn→∞ ρ(un, vn) = 0.

3. Main results

Now we will give the definition of Fej́er monotone sequences.

Definition 3.1. Assume S ⊂ B , where S is nonempty and B is a hyperbolic space. Moreover , suppose that {un} be a

sequence in B. Then the sequence {un} is said to be Fej́er monotone in connection with S if ∀ u ∈ S and n ∈ N ,

ρ(un+1, u) ≤ ρ(un, u).

Proposition 3.1. [19] Assume S ⊂ B , where S is nonempty and B is a hyperbolic space. Moreover , suppose that un be a

Fej́er monotone sequence in connection with S. Then the following conditions hold:

(1) {un} is bounded;

(2) the sequence {ρ(un, t)} is decreasing and convergent ∀ t ∈ FP (F).

We are now able to present the iterative process manufactured by Noor in hyperbolic spaces (see [19]):

Assume S ⊂ B, where S is nonempty, moreover S is close and convex, and B is hyperbolic space. Furthermore, F : S → S
be a mapping. For any u1 ∈ S, the sequence un of the Noor iteration process is manufactured by: un+1 = Ω(un,Fvn, γn),

vn = Ω(un,Fwn, αn),
wn = Ω(un,Fun, βn), n ∈ N,

(2)

where γn and αn are real sequences such that 0 < a ≤ γn, αn and βn ≤ b < 1.

We are able to manufacture the proof of the following lemma from the definition of SKC-mapping.

Lemma 3.1. Assume S ⊂ B, where S is nonempty and B is a hyperbolic space. Moreover suppose that F : S → S be an

SKC-mapping. If un be sequence manufactured by (3.1), then un is Fej́er monotone sequence in connection with FP (F).

Proof. Let q ∈ FP (F). Then by (3.1), we have

ρ(wn, q) = ρ(Ω(un,Fun, βn), q)

≤ (1− βnρ(un, q) + βnρ(Fun, q)

≤ (1− βnρ(un, q) + βn[5ρ(q,Fq) + (un, q)]

≤ (1− βnρ(un, q) + βnρ(un, q)

≤ ρ(un, q). (3)

ρ(vn, q) = ρ(Ω(un,Fwn, αn), q)

≤ (1− αnρ(un, q) + αnρ(Fwn, q)

≤ (1− αnρ(un, q) + αn[5ρ(q,Fq) + (wn, q)]

≤ (1− αnρ(un, q) + αnρ(wn, q)

≤ (1− αnρ(un, q) + αnρ(un, q)

≤ ρ(un, q). (4)

ρ(un+1, q) = ρ(Ω(un,Fvn, γn), q)

≤ (1− γnρ(un, q) + γnρ(Fvn, q)

≤ (1− γnρ(un, q) + γn[5ρ(q,Fq) + (vn, q)]

≤ (1− γnρ(un, q) + γnρ(vn, q)

≤ (1− γnρ(un, q) + γnρ(un, q)
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≤ ρ(un, q). (5)

∀ q ∈ FP (F). Which completes the proof.

Lemma 3.2. Assume S ⊂ B, where S is nonempty , moreover S is also close and convex. Furthermore, the triplet (B, ρ,Ω)
represents uniformly convex hyperbolic space , which is complete and having η as monotone modulus of uniform convexity

and set F : S → S be an SKC-mapping. If the sequence un is manufactured by (3.1), then FP (F) is nonempty if and only

if un is bounded and limn→∞ ρ(un,Fun) = 0.

Proof. Suppose FP (F) be nonempty and q ∈ FP (F). Then, the sequence un is Fej́er monotone with respect to FP (F) by

using by Lemma 3.3. Furthermore, un is bounded and limn→∞ ρ(un, q) by using Proposition 3.2.

Set limn→∞ ρ(un,Fun) = e ≥ 0. If e = 0, then clearly we have

ρ(un,Fun) ≤ ρ(un, q) + ρ(Fun, q)

≤ ρ(un, q) + 5ρ(q,Fq) + ρ(un, q)

≤ 2ρ(un, q)

Applying the limit supremum, we have

lim
n→∞

ρ(un,Fun) = 0.

Set e > 0. Moreover F is an SKC-mapping, then

ρ(Fq,Fvn) ≤ ρ(q, vn)

and

ρ(Fq,Fun) ≤ ρ(q, un).

Therefore,

ρ(Fn, q) ≤ ρ(Fn,Fq).

≤ ρ(un, q)

for every n ∈ N . Applying the limit supremum, we get

lim sup
n→∞

ρ(Fn, q) ≤ e,

for e > 0. Further we have

lim sup
n→∞

ρ(Fv, q) ≤ e.

Applying the limit supremum, we get

lim sup
n→∞

ρ(vn, q) ≤ e.

Since

e = lim sup
n→∞

ρ(un+1, q)

≤ lim sup
n→∞

{ρ(Ω(un,Fvn, γn), q)}

≤ lim sup
n→∞

{(1− γn)ρ(un, q) + γnρ(Fvn, q)}

≤ (1− γn) lim sup
n→∞

ρ(un, q) + γn lim sup
n→∞

ρ(Fvn, q)

we have

e ≤ ((1− αn)e+ αne) = e.

Thus

lim
n→∞

{ρ(Ω(un,Fvn, γn), q)} = e,

for e > 0. Consequently it occurs from the lemma(2.3) that

lim
n→∞

ρ(Fun,Fvn) = 0.

6



Next,

ρ(un+1,Fun) = ρ(Ω(un,Fvn, γn),Fun)

≤ dρ(Fvn,Fun)

→ 0 as : n → ∞.

Hence, we have

ρ(un+1,Fvn) = ρ(un+1,Fun) + (Fun),Fvn)

→ 0 as : n → ∞.

Notice that

ρ(un+1, q) = ρ(un+1,Fvn) + (Fvn), q)

≤ ρ(un+1,Fvn) + (Fn), q)

Which produces

c ≤ lim inf
n→∞

ρ(vn, q).

From above inequalities, we get

lim
n→∞

ρ(vn, q) = e.

Thus, we get

lim
n→∞

{ρ(Ω(un,Fun, αn), q)} = e,

which implies

lim
n→∞

ρ(un,Fun) = 0.

Conversely, assume that the sequence {un} is bounded and limn→∞ ρ(un,Fun) = 0.

Set AC(S, {un}) = u be a singleton. Then u ∈ S. Further F is an SKC −mapping

d(un,Fu) ≤ 5ρ(un,Fun) + ρ(un, u),

which implies that

rb(Fu, un) = lim sup
n→∞

ρ(un,Fu)

≤ lim sup
n→∞

[5ρ(un,Fun) + ρ(un, u)]

≤ lim sup
n→∞

ρ(un, u)

= rb(u, un).

By utilizing the uniqueness of the asymptotic center, Fu = u, so u is a fixed point of F. Consequently, FP (F) is

nonempty.

Now, we are able to prove the ∆− convergence theorem.

Theorem 3.1. Assume S ⊂ B, where S is nonempty , moreover S is also close and convex. Furthermore, the triplet (B, ρ,Ω)
represents uniformly convex hyperbolic space , which is complete and having η as monotone modulus of uniform convexity

and set F : S → S be an FP (F) ̸= ϕ. If the sequence un is manufactured by (3.1), then the sequence un is ∆− convergent

to a fixed point of F.

Proof. Suppose F is an SKC-mapping. We observe that un be a bounded sequence. Therefore, un has a ∆ − convergent

subsequence.We have to show that every ∆ − convergent subsequence of un has a unique ∆ − limit in FP (F). To prove

this claim, suppose s and t be ∆ − limits of the subsequences sn and tn of un, respectively. Since AC(S, sn) = s and

AC(S, tn) = t by using lemma 2.1. Now by lemma 3.3, sn is a bounded sequence and and limn→∞ ρ(sn,Fsn) = 0.

We have to show that s is a fixed point of F.

d(sn,Fs) ≤ 5ρ(sn,Fsn) + ρ(sn, s).

Applying the limit supremum, we get

rb(sn,Fs) = lim sup
n→∞

ρ(sn,Fs)
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≤ lim sup
n→∞

[5ρ(sn,Fsn) + ρ(sn, s)]

≤ lim sup
n→∞

ρ(sn, s)

= rb(sn, s).

Hence, we have

rb(sn,Fs) ≤ rb(sn, s).

By uniqueness of the asymptotic center, Fs = s.

By using same argument, we can show that Ft = t. Consequently, s and t are fixed points of F. Now we show that s = t.

Suppose on contrary that s ̸= t , moreover by the uniqueness of the asymptotic center,

lim sup
n→∞

ρ(un, s) = lim sup
n→∞

ρ(sn, s)

< lim sup
n→∞

ρ(sn, t)

= lim sup
n→∞

ρ(un, t)

= lim sup
n→∞

ρ(tn, t)

< lim sup
n→∞

ρ(tn, s)

= lim sup
n→∞

ρ(un, s)

which is a contradiction. Therefore s = t.

Now, we will introduce the strong convergence theorems in hyperbolic spaces.

Theorem 3.2. Assume S ⊂ B, where S is nonempty , moreover S is also close and convex. Furthermore, the triplet

(B, ρ,Ω) represents uniformly convex hyperbolic space , which is complete and having η as monotone modulus of uniform

convexity and set F : S → S be an SKC-mapping.If the sequence un is manufactured by (3.1), then the sequence un converges

strongly to some fixed point of F if and only if

lim inf
n→∞

D(un, FP (F)) = 0,

where D(un, FP (F)) = infu∈FP (F) ρ(un, u).

Proof. Clearly the necessity condition is trivial. The prove completes only by showing the sufficient condition. To manu-

facture the proof first, we show that FP (F) is closed. Assume that F is SKC-mapping, moreover suppose that un be any

sequence in FP (F) which converges to some point u ∈ S.

ρ(un,Fu) ≤ 5ρ(Fun,Fu) + ρ(un, u) ≤ ρ(un, u).

Applying the limit, we get

lim
n→∞

ρ(un,Fu) ≤ lim
n→∞

ρ(un, u) = 0.

Since, the limit is unique, so we get u = Fu, which shows that FP (F) is closed.

Assume that

lim inf
n→∞

D(un, FP (F)) = 0,

Moreover, we obtain

D(un+1, FP (F)) ≤ D(un, FP (F))

Thus limn→∞ ρ(un, FP (F)) exists by applying Lemma 3.3 and using Proposition 3.2. Consequently we know that

lim
n→∞

D(un, FP (F)) = 0.

Consequently, we can set a subsequence {unk
} of {un} so that

ρ(unk
, qk) <

1

2k
,

for every k ≥ 1, where {qk} ∈ FP (F).

Applying Lemma 3.3, we get

ρ(unk+1
, qk) ≤ ρ(unk

, qk) <
1

2k
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from which we can deduce that

ρ(qk+1, qk) ≤ ρ(qk+1, unk+1
) + ρ(unk+1

, qk)

<
1

2k+1
+

1

2k

<
1

2k−1
.

Thus {qk} is a Cauchy sequence. Whereas FP (F) is closed. Then {qk} is a convergent sequence.

Suppose limk→∞ qk = q. Then the prove completes by showing that {un} converges to q. In fact, whereas

ρ(unk
, q) ≤ ρ(unk

, qk) + ρ(qk, q) → 0

as k → ∞.

We have

lim
k→∞

ρ(unk
, q) = 0.

Since limk→∞ ρ(un, q) exists, the sequence {un} is converges to q.

Next, we will give one more strong convergence theorem by using Theorem 3.8. We call up the definition of condition

(I) broached by Senter and Doston [34].

Assume (B, ρ) be a metric space and S ⊂ B which is nonempty, equipped with a mapping F : S → S . Then F is claimed

to fulfill condition (I), if ∃ a nondecreasing function f [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 ∀ t ∈ (0,∞) so that

ρ(u,Fu) ≥ f(D(u, FP (F))),

∀ u ∈ S, where D(u, FP (F)) = inf d(u, q) : q ∈ FP (F).

Theorem 3.3. Assume S ⊂ B, where S is nonempty , moreover S is also close and convex. Furthermore, the triplet

(B, ρ,Ω) represents uniformly convex hyperbolic space , which is complete and having η as monotone modulus of uniform

convexity and set F : S → S be an SKC-mapping with condition (I) andFP (F) ̸= ϕ. Then the sequence {un} which is

manufactured by (3.1) converges strongly to some fixed point of F.

Proof. From Theorem 3.6, and applying Lemma 3.4, we have

lim
n→∞

ρ(un,Fun) = 0.

The condition (I) gives us

lim
n→∞

ρ(un,Fun) ≥ lim
n→∞

f(D(un, FP (F))),

for f [0,∞) → [0,∞),which is nondecreasing with f(0) = 0, f(t) > 0 for t, such that 0 < t < ∞.

Consequently, we get

lim
n→∞

f(D(un, FP (F))) = 0.

Whereas f is a nondecreasing mapping filling f(0) = 0 for every t, such that 0 < t < ∞, we get

lim
n→∞

D(un, FP (F)) = 0.

Which completes the proof from Theorem.

4. Numerical example

Example 4.1. Consider the real line R with usual metric ρ defined as ρ(u, v) = |u− v| , moreover suppose S = [0, 4] ⊂ R.

Set

Ω(u, v, γ) = γu+ (1–γv),

for every u, v ∈ S.
Then (R, ρ,Ω) is a complete uniformly convex hyperbolic space with a monotone modulus of uniform convexity and

clearly S ⊂ R , which is nonempty close and convex. Set a mapping F as manufactured in Example 1.6.

Clearly F fulfills the SKC condition with 0 ∈ S as a fixed point of F. Moreover , it is noticed that it fulfills all conditions

in Theorem 3.6. Suppose γn and αn be constant sequences such that γn = αn = βn = 1
2 for every n ≥ 0. We encounter

following cases for F.
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Case 1: Set u ̸= 4, for the sake of simplicity, we suppose that u0 = 1. Moreover by the iterative process manufactured in

(3.1) and the definition of Ω, we get

w0 = Ω(u0,Fu0,
1

2
)

=
1

2
(u0) + (1− 1

2
)(Fu0)

=
1

2
(u0 + Fu0)

and

v0 = Ω(u0,Fw0,
1

2
)

=
1

2
(u0) + (1− 1

2
)(Fw0)

=
1

2
(u0 + Fw0)

and

u1 = Ω(u0,Fv0,
1

2
)

=
1

2
(u0) + (1− 1

2
)(Fv0)

=
1

2
(u0 + Fv0)

Case 2: Set u = 4, for the sake of simplicity, we suppose that u0 = 4. Moreover by the iterative process manufactured in

(3.1) and the definition of Ω, we get

w0 = Ω(u0,Fu0,
1

2
)

=
1

2
(u0) + (1− 1

2
)(Fu0)

=
1

2
(u0 + Fu0)

and

v0 = Ω(u0,Fw0,
1

2
)

=
1

2
(u0) + (1− 1

2
)(Fw0)

=
1

2
(u0 + Fw0)

and

u1 = Ω(u0,Fv0,
1

2
)

=
1

2
(u0) + (1− 1

2
)(Fv0)

=
1

2
(u0 + Fv0)

w1 = Ω(u1,Fu1,
1
2 )

v1 = Ω(u1,Fw1,
1
2 )

u2 = Ω(u1,Fv1,
1
2 )

Consequently by simple calculations, it can be seen that the sequence {un} converges to 0 ∈ FP (F).
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