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Abstract

This paper delves into the exploration of entropy in weighted graphs, where edge weights are determined by the Sombor
Reduced Index. The primary aim is to establish and substantiate results by examining various graph types, including
Connected Graphs, Star Graphs, Unicyclic Graphs, Regular Graphs, Complete Graphs, Complete Bipartite Graphs,
Chemical Graphs, and Tree Graphs. Through rigorous analysis, we unveil the implications of these weighted structures
on information content and structural complexities. Additionally, we extend our study to compute weighted entropies
for molecular graphs representing specific dendrimer structures. This research contributes to a nuanced understanding
of the informational intricacies embedded in diverse graph configurations, particularly emphasizing their significance in
the molecular domain.
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1. Introduction

A Graph Γ is an arranged pair of sets ζ(Γ) and ξ(Γ). The components of ζ(Γ) are named as vertices and the component

of ξ(Γ) are named as edges. A line joining two dots (vertices) is called an edge and is denoted by ξ(Γ). Simply we denote

an Edge as rs instead of {r, s}. In a graph dots represent the vertex and we denote a vertex set by ζ(Γ). All vertices

adjacent(means associated with same edges) to dots( vertex) r are neighbors of s. The neighborhood of r is the arrangement

of the neighbors of r. The vertex having 0 degree is called a isolated vertex. The total vertex in a graph tell us the order of

a graph and is represented by | Γ |=| ζ |. The total edges in a graph gives the size of a graph and is denoted by ∥ Γ ∥=∥ ξ ∥.
An edge having starting and ending point is same is called loop. Those edges having same pair of vertices called multiple

edges. The quantity of edges associated with dot(vertex) ζi (implies the number of edges associated with vertex) and is

signified as deg ζi. Since each line is connected with two vertices. A dot(vertex) having maximum lines (edges) tell us

the maximum degree and is denoted by θ(G) and defined as θ(G) = max{deg r | r ∈ ζ(Γ)}. The Minimum degree of a

graph is the minimum degree(minimum number of lines connected ) of its vertex, is denoted by ϕ(Γ) and is defined as

ϕ(Γ) = min{deg r | r ∈ ζ(Γ)}. A basic graph on ’p’ vertices in which every two vertices are connected by an edge is called

Complete graph and is denoted by Kp. In Kp all vertices have same degree.

∥ Kp ∥ = pC2 =
p(p− 1)

2
and

| Kp | = p

ϕ(Γ) = θ(Γ) = deg(G) = p− 1

A graph in which every vertex are connected with equal number of edges (means that have same degree )is called Regular

graph. If every vertex has m-edges( or degree m), then these types of graphs are ordinary graph of degree m or m-regular.

If the vertex set of Graph Γ can be divided into two sets( having no common vertex) A and B so that each line(edge) of Γ

joins a vertex of A with a vertex of B, then Γ is a Bipartite Graph and is indicated by Kq,p. A Bipartite Graph in which

every vertex in A is joined to every vertex in B with the help of one edge and represented by Kq,p. A graph Γ is connected

if the any two vertex are connected by a path or a line(edge). Or in other words, A graph is connected if each pair of vertex

is joined by a way. A unicyclic graph is an connected graph containing precisely one cycle. A connected unincyclic graph is

in this manner a pseudo tree that isn’t a tree. Unicyclic graph is indicated by Up,m. A tree is an undirected(which contains

no direction) graph in which any two vertices are connected by precisely one way. A tree graph is indicated by Tp. A star

graph is the K1,p of ’p’ vertices and is meant by Sp. Some creators characterize Sp to be tree of order p. A graph related
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with compounds in which molecules are considers as vertices and bonds are Considers as edges. The topological index is

a genuine symbol related with the sub-atomic graph. Many topological indices are characterized in [3]- [5]. Few of them

depend on distance, but others depend on degree and have discovered numerous applications in drug store.

In 1975, the primary degree based topological index [6] was present.Latter, this record was summed up anyone genuine

number α by Estrada et al in [7] and is said to Randić index.Another well known Topological index based on the vertex

degree of the Graph is the sombor index [1]. In light of the historic work of Shannon’s [14], in the last part of the 1950s

started to examine the entropy estimation of organization system. Rashevsky utilizes the idea of graph entropy to quantify

the primary intricacy of chart on the based of Shannon’s entropy. Mowshowitz [15] also present the entropy as data

hypothesis.Mowshowitz [16] later contemplated the numerical properties of graph entropy and applications. Another are

in Körners entropy [17]. Many kind of graph conclusion have been used to expand graph entropy, for example, eigenvalue

and network data [18], based on distance of graph entropy and based on degree of graph entropy.

We utilize the idea of graph entropy as a weighted graph, just as Dehmer [18]. Few of them based on degree are described

by examining limits of entropy of certain class of graphs [20], [21]. In [22] Chen et al. also present the idea of graph entropy.

As of late, Gutman presented another topological index under the name of Sombor reduced index SOrd(Γ).

In this paper we study the graph entropy by taking Sombor reduced index with edge weights and prove some external

properties of graph entropy for special families of graphs such as connected graph, regular graph, complete bipartite graph,

chemical graph, tree graph, unicyclic graph and star graphs.

2. Preliminaries

Definition 2.1. Sombor Reduced Index Let Γ = (ζ, ξ) is a limited simple graph and is characterized as [23]

SOrd(Γ) =
∑

rs∈ξ(Γ)

√
(dr − 1)2 + (ds − 1)2

where dr denote the degree of the vertex r in SOrd(Γ).

Definition 2.2. Entropy

The entropy of edge weighted Graph Γ = (ζ, ξ, wt) is characterized by

E(Γ, wt) = −
∑

rs∈ξ(Γ)

Xr,s logXr,s

where,

Xr,s =
wt(rs)∑

rs∈ξ(Γ) wt(rs)

Definition 2.3. Weighted Graph A graph in which a weight gives to each edge.

Definition 2.4. Entropy Of Weighted Graphs Graph have been started in the late of 1950s dependent on the fundamental

work because of Shannon. For model, diagram entropy measures have been widely to portray the design of diagram based

frameworks in numerical, science and in software engineering related areas [1]. Rashevsky is the primary who presented

the purported underlying data content dependent on parcel on vertex orbits [10]. Mowshowitz utilized a few measures and

demonstrated a few properties [9]. For a given graph Γ and vertex si, let di be the degree of si.For an edge sisj, one defines.

Xij =
wt(sisj)∑di

j=1wt(sisj)

where, wt(sisj) is the weight of edge sisj and wt(sisj) > 0. The vertex entropy defined as

N(si) =

di∑
j=1

Xij log(Xij)

3. Main Results

Theorem 3.1. If a connected graph Γ consist on p-vertices for p ≥ 3. Then

logSOrd(Γ)− log
√
2.(p− 2) ≤ E(Γ, SOrd(Γ)) ≤ log(SOrd(Γ))
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Proof. If Γ is a simple connected graph consist on p-vertices, then the maximum degree is (p− 1) and minimum degree is

1 with any edge rs, the minimum possible degree of r and s are 1 and 2 respectively, and the maximum possible degrees of

r and s are (p− 1) and (p− 1) so we have,

SOrd(Γ) =
∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2

E(Γ, SOrd(Γ)) = −
∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

log

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

E(Γ, SOrd(Γ)) = −
∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2log

√
(dr − 1)2 + (ds − 1)2 − log

∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2


= −

∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

log
√
(dr − 1)2 + (ds − 1)2+

∑
rsϵξ

√
d2r + d2s∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

log
∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2

= log
∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2 − log

√
(dr − 1)2 + (ds − 1)2

E(Γ, SOrd(Γ)) = logSOrd(Γ)− log
√
(dr − 1)2 + (ds − 1)2

SO,

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log
√
(dr − 1)2 + (ds − 1)2

= logSOrd(Γ)−
1

2
log((2− 1)2 + (1− 1)2)

= logSOrd(Γ)− log
√
1

= logSOrd(Γ)− log 1

= logSOrd(Γ)

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)

Also,

E(Γ, SOrd(Γ)) ≥ logSOrd(Γ)− log
√

(dr − 1)2 + (ds − 1)2

= logSOrd(Γ)−
1

2
log((p− 1− 1)2 + (p− 1− 1)2)

= logSOrd(Γ)−
1

2
log 2(p− 2)2

= logSOrd(Γ)− log
√
2(p− 2)2

= logSOrd(Γ)− log
√
2.(p− 2)

E(Γ, SOrd(Γ)) ≥ logSOrd(Γ)− log
√
2.(p− 2)

Hence,

logSOrd(Γ)− log
√
2.(p− 2) ≤ E(Γ, SOrd(Γ)) ≤ log(SOrd(Γ))

Theorem 3.2. Suppose Γ is a regular graph having p-vertices. Let ϕ and θ be the minimum and maximum degree of Γ,

respectivly. Then,

log(SOrd(Γ))− log(ϕ− 1)
√
2 ≤ E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)−

1

2
log(θ − 1)

√
2
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Proof. A regular graph having p-vertices, then it has degree m and has r = 1
2p(m− 1) edges then its sombor reduced index

is

SOrd(Γ) =
1

2
p(m− 1)

√
(m− 1)2 + (m− 1)2

p(ϕ− 1)2√
2

≤ SOrd(Γ) ≤
p(θ − 1)2√

2

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log
√

(dr − 1)2 + (ds − 1)2

= logSOrd(Γ)−
1

2
log((θ − 1)2 + (θ − 1)2)

= logSOrd(Γ)−
1

2
log 2(θ − 1)2

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log(θ − 1)
√
2

Also,

E(Γ, SOrd(Γ)) ≥ logSOrd(Γ)− log
√

(dr − 1)2 + (ds − 1)2

= logSOrd(Γ)−
1

2
log((ϕ− 1)2 + (ϕ− 1)2)

= logSOrd(Γ)−
1

2
log 2(ϕ− 1)2

E(Γ, SOrd(Γ)) ≥ logSOrd(Γ)− log(ϕ− 1)
√
2

Hence,

log(SOrd(Γ))− log(ϕ− 1)
√
2 ≤ E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)−

1

2
log(θ − 1)

√
2

Theorem 3.3. For a regular graph Γ = (ζ, ξ, wt) having p-vertices such that p ≥ 3,

log p ≤ E(Γ, SOrd(Γ)) ≤ log
p(p− 1)

2

and log p = E(Γ, SOrd(Γ)) ⇔ Γ is cyclic and E(Γ, SOrd(Γ)) = log p(p−1)
2 ⇔ Γ is complete.

Proof. If Γ is a m-Regular Graph with m ≥ 2.As Γ is connected with p ≥ 3, so

E(Γ, SOrd(Γ)) = −
∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

log

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

E(Γ, SOrd(Γ)) = −
∑
rsϵξ

√
(m− 1)2 + (m− 1)2∑

rsϵξ

√
(m− 1)2 + (m− 1)2

log

√
(m− 1)2 + (m− 1)2∑

rsϵξ

√
(m− 1)2 + (m− 1)2

= −p(m− 1)

2
.

√
(m− 1)2 + (m− 1)2

p(m−1)
2 .

√
(m− 1)2 + (m− 1)2

log

√
(m− 1)2 + (m− 1)2

p(m−1)
2

√
(m− 1)2 + (m− 1)2

= − log
1

p(m−1)
2

= − log
2

p(m− 1)

= log
p(m− 1)

2

E(Γ, SOrd(Γ)) ≤ log p(p−1)
2 ⇔ m = p and E(Γ, SOrd(Γ)) ≥ log p ⇔ m = 3. Hence,

log p ≤ E(Γ, SOrd(Γ)) ≤ log
p(p− 1)

2
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Theorem 3.4. In a complete bipartite graph Γ with p-vertices. Then

log(p− 1) ≤ E(Γ, SOrd(Γ)) ≤ log
(⌊p

2

⌋⌈p
2

⌉)
and log(p− 1) = E(Γ, SOrd(Γ)) ⇔ Γ is star graph and E(Γ, SOrd(Γ)) = log

(⌊
p
2

⌋⌈
p
2

⌉)
⇔ Γ is complete bipartite graph.

Proof. In a complete bipartite graph consist on p-vertices and having two parts m and n vertices, respectively. Therefore,

(m− 1) + (n− 1) = p

E(Γ, SOrd(Γ)) = −
∑
rsϵξ

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

log

√
(dr − 1)2 + (ds − 1)2∑

rsϵξ

√
(dr − 1)2 + (ds − 1)2

E(Γ, SOrd(Γ)) = −
∑
rsϵξ

√
(m− 1)2 + (n− 1)2∑

rsϵE

√
(m− 1)2 + (n− 1)2

log

√
(m− 1)2 + (n− 1)2∑

rsϵξ

√
(m− 1)2 + (n− 1)2

= −(m− 1)(n− 1).

√
(m− 1)2 + (n− 1)2

(m− 1)(n− 1).
√
(m− 1)2 + (n− 1)2

.

log

√
(m− 1)2 + (n− 1)2

(m− 1)(n− 1)
√

(m− 1)2 + (n− 1)2

= − log
1

(m− 1)(n− 1)

= log (m− 1)(n− 1)

Moreover, log(p− 1) = E(Γ, SOrd(Γ)) ⇔ m = 2 and n = p that is Γ is a Star Graph and log
(⌊

p
2

⌋⌈
p
2

⌉)
= E(Γ, SOrd(Γ)) ⇔

(m− 1) =
⌊
p
2

⌋
and (n− 1) =

⌈
p
2

⌉
that is Γ is a complete Bipartite Graph. Hence,

log(p− 1) ≤ E(Γ, SOrd(Γ)) ≤ log
(⌊p

2

⌋⌈p
2

⌉)

Theorem 3.5. Suppose Γ is a chemical graph having p-vertices, then

E(Γ, SOrd(Γ)) ≤ log(SOrd(Γ))− log 3

Proof. In any chemical graph Γ 4 is the maximum degree of a vertex and 1 is the minimum degree of the vertex.

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log
√

(ds − 1)2 + (dr − 1)2

= logSOrd(Γ)−
1

2

(
log (4− 1)2 + (1− 1)2

)
= logSOrd(Γ)−

1

2
log(9)

= logSOrd(Γ)−
1

2
log 9

= logSOrd(Γ)− log
√
9

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log 3

Hence,

E(Γ, SOrd(Γ)) ≤ log(Sord(Γ))− log 3

Theorem 3.6. Suppose Γ is a complete graph having p-vertices, then

E(Γ, SOrd(Γ)) ≤
p(p− 1)(p− 2)

√
2

2
− log

√
2(p− 2)

Proof. In any Complete Graph of order p. The ϕ = p− 1 and θ = p− 1

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log
√
(dr − 1)2 + (ds − 1)2
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SOrd(Γ) =
p(p− 1)(p− 2)

√
2

2

=
p(p− 1)(p− 2)

√
2

2
− 1

2
log ((p− 1− 1)2 + (p− 1− 1)2)

=
p(p− 1)(p− 2)

√
2

2
− 1

2
log 2((p− 2)2)

=
p(p− 1)(p− 2)

√
2

2
− log

√
2((p− 2))

E(Γ, SOrd(Γ)) ≤
p(p− 1)(p− 2)

√
2

2
− log

√
2(p− 2)

Theorem 3.7. Let Γ be any tree having p-vertices. Then ,

E(Γ, SOrd(Γ)) ≤ (p− 1)(p− 2)− log(p− 1)

Proof. Among all Trees of order p ≥ 4, ϕ = 1 and θ = p

SOrd(Γ) = (p− 1)(p− 2)

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log
√
(dr − 1)2 + (ds − 1)2

= (p− 1)(p− 2)− 1

2
log ((p− 1)2 + (1− 1)2)

= (p− 1)(p− 2)− 1

2
log(p− 1)2

= (p− 1)(p− 2)− log
√
(p− 1)2

E(Γ, SOrd(Γ)) ≤ (p− 1)(p− 2)− log(p− 1)

Theorem 3.8. In a unicyclic graph

E(Γ, SOrd(Γ)) ≤ p
√
2 + qp

√
(q − 1)2 + (p− 1)2 − (log

√
2 + log

√
(q − 1)2 + (p− 1)2)

Proof. In a unicyclic graph, a graph which contain exactly one cycle, p ≥ 3 and q, p ≥ 2. Then Up = Cp +Kq,p in cycle

graph Cp the ϕ of a vertex and θ of a vertex is 2 and in complete Bipartite graph Kq,p the ϕ of a vertex is q + p and θ

degree is q + p.

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log
√
(dr − 1)2 + (ds − 1)2)

SOrd(Γ) = p
√
2 + qp

√
(q − 1)2 + (p− 1)2

= p
√
2 + qp

√
(q − 1)2 + (p− 1)2−

(log
√

(2− 1)2 + (2− 1)2 + log
√
(q − 1)2 + (p− 1)2

= p
√
2 + qp

√
(q − 1)2 + (p− 1)2−

(log
√

12 + 12 + log
√
(q − 1)2 + (p− 1)2)

= p
√
2 + qp

√
(q − 1)2 + (p− 1)2−

(log
√
2 + log

√
(q − 1)2 + (p− 1)2)

E(Γ, SOrd(Γ)) ≤ p
√
2 + qp

√
(q − 1)2 + (p− 1)2 − (log

√
2 + log

√
(q − 1)2 + (p− 1)2)

Theorem 3.9. For a Star Graph

E(Γ, SOrd(Γ)) ≤ p(p− 1)− log(p− 1)
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Figure 1: Porphyrin Dendrimer

Proof. For Star Graph, ϕ = 1 and θ = p

SOrd(Γ) = p(p− 1)

E(Γ, SOrd(Γ)) ≤ logSOrd(Γ)− log
√

(dr − 1)2 + (ds − 1)2

= p(p− 1)− log
√
((p− 1)2 + (1− 1)2)

= p(p− 1)− log
√
(p− 1)2

E(Γ, SOrd(Γ)) ≤ p(p− 1)− log(p− 1)

4. Applications in Fractals

Example 4.1. Consider the porphyrin dendrimers shown in Figure 1. We denote the graph of porphyrin dendrimers by Γ,

and the edge partition of Γ is given in Table 1. Using Table 1 and definition.

We have the following entropies for porphyrin dendrimers:

E(Γ, SOrd) = log(SOrd)− log
√
(dr − 1)2 + (ds − 1)2

= log(263.0873614n− 20.48747568)−
[
| E1 | log

√
4+ | E2 | log

√
9+ | E3 | log

√
2
]
−[

| E4 | log
√
5+ | E5 | log

√
8+ | E6 | log

√
13

]
= log(263.0873614n− 20.48747568)−

[
(2n) log

√
4 + (24n) log

√
9 + (10n− 5) log

√
2
]

−
[
(48n− 6) log

√
5 + (13n) log

√
8 + (8n) log

√
13

]
= log(263.0873614n− 20.48747568)− log(40.65925258n− 2.849)

= log(SOrd)− log(40.65925258n− 2.849)

Table 1: Edge partition of porphyrin dendrimer
(dr, ds) (1,3) (1,4) (2,2) (2,3) (3,3) (3,4)

Number of edges 2n 24n (10n− 5) 48n− 6 13n 8n

Example 4.2. The graph G of zinc-porphyrin dendrimer is shown in Figure 2, and the edge partition for this dendrimer

is given in Table 2. We have the following computations for the entropies of zinc-porphyrin dendrimer:
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Figure 2: Zinc Porphyrin Dendrimer

E(Γ, SOrd) = log(SOrd)− log
√
(dr − 1)2 + (ds − 1)2

= log(2n(134.6975531)− 101.0110981)−
[
| E1 | log

√
2+ | E2 | log

√
5+ | E3 | log

√
8+ | E4 | log

√
13

]
= log(2n(134.6975531)− 101.0110981)−

[
(16.2n − 4) log

√
2 + (40.2n − 16) log

√
5 + (8.2n − 16) log

√
8 + (4) log

√
13

]
= log(2n(134.6975531)− 101.0110981)− log(20.2n − 15.64642663)

= log(SOrd)− log(20.2n − 15.64642663)

Table 2: Edge partition of zinc-porphyrin dendrimers
(dr, ds) (2,2) (2,3) (3,3) (3,4)

Number of edges (16.2n − 4) (40.2n − 16) (8.2n − 16) 4

5. Conclusions

Weighted entropy is a generalization of Shannon’s entropy and is measure of information supplied by a probabilistic

experiments whose elementary events are characterized both by their objective probabilities and by some qualitative weights.

It is useful to rank chemicals and may be used to balance the amount of information. Weighted entropy also found

applications in coding throey. In this paper we have studied weighted entropy with sombor reduced index SOrd and

prove results by using different graphs. Our next aim is to work on entropy of weighted graphs with geometric and sum

connectivity edge weights. It would be interesting to work on entropy of weighted graphs with some other degree- and

distance-based topological indices. The bounds of degree-based network entropy can also be used in national security,

Internet networks, social networks, structural chemistry, ecological networks, computational systems biology, etc. They will

play an important role in analyzing structural symmetry and asymmetry in real networks in the future.
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