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Abstract

A graph is a particular representation of a static network and labeling of a graph can be think of as automatic routing of
data in a network topology. A visual representation of data in the form of a graph help us to look deep insight. The data
science (e.g., Python Package: a computer programming language) uses graph theory concepts to study and analyze the
networks. Analyzing these network is equivalent of finding a set of edges E′ for a graph G such that every vertex of G is
incident with at least one edge in E′. Then E′ is called an edge-covering of G. A spanning tree of a connected graph is an
example of edge-covering. A finite simple graph G is an (ad, d)-H-antimagic if the following three conditions are satisfied:
G has an H-covering (H a subgraph of G), there exists a bijection α : V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G) ∪ E(G)|} and
the H-weights constitute an arithmetic progression with common difference d. The above said labeling is called super
if α(V ) = {1, 2, . . . , |V |}. In this research article, we focused on studying super C3-antimagic labeling of line graph of a
sun-let graph for several differences and C3-supermagic labeling of its disjoint union.

Keywords: Network representation, C3-coverings, star graph, sun-let graph, line graph, disjoint union of graphs.

1. Introduction

A graph is a particular representation of a static network and labeling of a graph can be think of as automatic routing of

data in a network topology [17]. Vertices (or nodes) of a graph represents computers while edges (or curves) represents

connection between computers of a network. Antimagic labeling of a graph helps routers to detect and distinguish between

different computers on the same network. Network visualization using graph enables us to analyze the network structure.

Mobile Adhoc Networks (MANETS) [7] issues can be resolved using graph labeling. The solutions of MANETS in Graph

theory are found by graph spanners and the proximity of graph. All these problems can be addressed by finding an

edge-coverings of a graph and then assigning them different labels (weights).

Let G = (VG, EG) be a connected, finite and simple graph. An edge-covering of G is a family {G′
1, G

′
2, . . . , G

′
q} ⊂ G such

that for all e ∈ EG, e ∈ G′
l, for some l, l = 1, 2, . . . , q. If G′

l
∼= G′, ∀l, then G has an G′-covering. Graph G with G′-covering

is an (ad, d)-G
′-antimagic if there exists a bijection α : VG ∪ EG → {1, 2, . . . , |VG|+ |EG|} such that for all subgraphs of G

isomorphic to G′

wtα(G
′) = {

∑
(α(vG′) + α(EG′))}

= {ad, ad + d, . . . , ad + (q − 1)d}

where ad > 0 and d ≥ 0 are positive integers. For α(VG) = {1, 2, 3, . . . , |VG|}, the labeling α becomes super (ad, d)-

G′-antimagic and it would be G′-supermagic for d = 0. Gutiérrez and Lladó in [3] defined a super G-magic labeling.

The obtained results are about star graphs, complete bipartite graphs, wheels, prisms and banana tree graphs. The Cn-

supermagic labeling of different families of graphs can be found in [9]. Examples of G′-supermagic graphs with different

choices of G′ are given by Jeyanthi and Selvagopal in [6]. Inayah et al. [4] gave idea of an (ad, d)-G
′-antimagic labeling.

The results about (ad, d)-G
′-antimagic labeling of shackles of a connected graph G are in [4, 5].

In recent years, Baca et al. [2] discussed the tree-antimagicness of disconnected graphs. Authors in [10] discussed the

super (a, 1)-tree-antimagicness of sun graphs. The antimagic behaviour of generalized sun graph and its subdivision are

discussed in [18]. The results about b-chromatic number of a sun-let related graphs and a wheel graph are discussed in [20].

Author in [21] discussed the problem of deciding whether an arbitrary graph contains a sun is NP-complete. Mahavir [22]

obtained results about the printing cycle for embedding the sun graph in a single page. In the same paper, he gave a linear

time algorithm for such an embedding. Graceful labelings for sun graph, extension sun, double fan and leg graph with star

are discussed in [23].

In the present paper, we proved the results about super (ad, d)-C3-antimagic labeling of line graph L(Sn) for differences

d ∈ {0, 1, . . . , 7, 8, 9, 10, 11, 13} and C3-supermagic labeling for disjoint union of L(Sn), where Sn is a star graph on n vertices.
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2. C3-antimagic labeling of line graph of Sun-let graph

The sun-let graph (n-sun let) Sn, n ≥ 3, is obtained from a cycle Cn by attaching n pendant edges to a cycle Cn.

[19] The line graph L(G) of a graph G is graph with V (L(G)) = E(G) and E(L(G)) = {ee′ : e, e′are incident edges in G}.
Let Sn, n ≥ 3 be a sun-let graph with vertex set V (Sn) = {xt, yt : 1 ≤ t ≤ n} and edge set E(Sn) = {xtxt+1 : 1 ≤
t ≤ n − 1} ∪ {xtyt : 1 ≤ t ≤ n}. The line graph L(Sn) has vertex set: V (L(Sn)) = {x′

t, y
′
t : 1 ≤ t ≤ n} and edge set:

E(L(Sn)) = {x′
t, x

′
t+1} ∪ {y′tx′

t, y
′
tx

′
t−1}, where indices t are taken modulo n. Clearly Line graph L(Sn) of a sun-let graph

has C3 coverings of the form {x′
t, y

′
t, x

′
t+1}, where indices t are taken modulo n. Figure 1 depicts line graph L(Sn) of a

sun-let graph. Under a total labeling α, the C
(j)
3 -weights, for indices j = 1, 2, . . . , n are:
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Figure 1: Line graph L(Sn) of a sun-let graph Sn

wtα(C
(j)
3 ) =

∑
u∈V (C

(j)
3 )

α(u) +
∑

e∈E(C
(j)
3 )

α(e).

=

(
α(x′

j) + α(x′
j+1) + α(y′j)

)
+

+

(
α(x′

j)α(x
′
j+1) + α(x′

j)α(y
′
j)+

+ α(x′
j+1)α(y

′
j)

)
(1)

Theorem 2.1. The line graph L(Sn) of sun-let graph Sn admits a super (ad, d)-C3-antimagic labeling for ad > 0, n ≥ 3

positive integers and d ∈ {0, 1, . . . , 7, 10, 11}.

Proof. The total labeling αd, d = 0, 1, . . . , 7, 10, 11 for line graph L(Sn) is defined as:

αd(x
′
i) =

{
i d = 0, 2, 4, 6, 10

2i d = 1, 3, 5, 7, 11

αd(y
′
i) =

{
2n+ 1− i d = 0, 2, 4, 6, 10

2n+ 1− 2i d = 1, 3, 5, 7, 11

αd(x
′
ix

′
i+1) =

{
2n+ 1 + i d = 0, 1, 2, . . . , 7

2n+ 1 + 3i d = 10, 11

αd(x
′
iy

′
i) =


5n− i d = 0, 1, 2, 3

4n+ 1 + i d = 4, 5

3n+ 2 + 2i d = 6, 7

2n+ 3 + 3i d = 10, 11
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αd(y
′
ix

′
i+1) =


4n− i d = 0, 1

3n+ 1 + i d = 2, 3, 4, 5

3n+ 1 + 2i d = 6, 7

2n+ 2 + 3i d = 10, 11

where indices i are taken modulo n.

Using (1), the the C
(j)
3 -weights are:

wtα0
(C

(j)
3 ) = (2(n+ 1) + i) + (11n+ 1− i) = 13n+ 3

wtα1(C
(j)
3 ) = (2n+ 3 + 2i) + (11n+ 1− i) = 13n+ 4 + i

wtα2
(C

(j)
3 ) = (2n+ 2 + i) + (10n+ 2 + i) = 12n+ 4 + 2i

wtα3(C
(j)
3 ) = (2n+ 3 + 2i) + (10n+ 2 + i) = 12n+ 5 + 3i

wtα4
(C

(j)
3 ) = (2n+ 2 + i) + (9n+ 3 + 3i) = 11n+ 5 + 4i

wtα5
(C

(j)
3 ) = (2n+ 3 + 2i) + (9n+ 3 + 3i) = 11n+ 6 + 5i

wtα6(C
(j)
3 ) = (2n+ 2 + i) + (8n+ 4 + 5i) = 10n+ 6(i+ 1)

wtα7
(C

(j)
3 ) = (2n+ 3 + 2i) + (8n+ 4 + 5i) = 10n+ 7(i+ 1)

wtα10(C
(j)
3 ) = (2n+ 2 + i) + (6n+ 6 + 9i) = 8(n+ 1) + 10i

wtα11
(C

(j)
3 ) = (2n+ 3 + 2i) + (6n+ 6 + 9i) = 8n+ 9 + 11i (2)

Clearly total labeling αd, d = 0, 1, . . . , 7, 10, 11 is super since vertices are labelled with integers {1, 2, . . . , 2n}. Equation (2)

shows that line graph L(Sn) admits super (ad, d)-C3-antimagic labeling for d ∈ {0, 1, . . . , 7, 10, 11}.
This completes the proof of theorem.

Theorem 2.2. The line graph L(Sn) of Sun-let graph Sn admits a super (ad, d)-C3-antimagic labeling for (n ≥ 3) odd,

ad > 0 positive integers and d ∈ {8, 9, 13}.

Proof. The total labeling αd, d = 8, 9 for line graph L(Sn) is defined as:

αd(x
′
i) =


n+i+1

2 i ≡ 0 (mod 2), d = 8, 9

n+ i+ 1 i ≡ 0 (mod 2), d = 13
i+1
2 i ≡ 1 (mod 2), d = 8, 9

i+ 1 i ≡ 1 (mod 2), d = 13

(3)

αd(y
′
i) =


2n+ 1− n+1+i

2 i ≡ 0 (mod 2), d = 8

2n+ 1− i+1
2 i ≡ 1 (mod 2), d = 8

2n− i d = 9

2i+ 1 d = 13

(4)

Clearly from equations (3) and (4) for any C
(j)
3 , we have

wtαd
(V (C

(j)
3 )) =


2n+ 2 + i

2 i ≡ 0 (mod 2), d = 8
5n+4+i

2 i ≡ 0 (mod 2), d = 8
5n+3

2 d = 9

n+ 4(i+ 1) d = 13

(5)

where indices i are taken modulo n.

For j = 1, 2, . . . , n, we have

α8(E(C
(j)
3 )) =


2⋃

k=0

{5n− k − 3( j2 )} i ≡ 0 (mod 2)

2⋃
k=0

{5n− k − 3(n+j
2 )} i ≡ 1 (mod 2)

(6)

wtα8(E(C
(j)
3 )) =

{
17n− 1− 4i i ≡ 0 (mod 2)

13n− 1− 4i i ≡ 1 (mod 2)
(7)

and for d ∈ {9, 13}

αd(E(C
(j)
3 )) =

2⋃
k=0

{2(n− 1) + 3j + k} (8)
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wtαd
(E(C

(j)
3 )) = 3(2n− 1) + 9j (9)

Using equations (1), (5),(6),(7), the C3-weights under labeling α8 are {9n+7, 9n+15, . . . , 17n−1)} which clearly constitute

an arithmetic progression with a common difference d = 8 and labeling α8 is super.

Similarly using equations (1), (5), (8), (9), the C3-weights under labeling αd, d ∈ {9, 13} are:

wtα9(C
(j)
3 ) =

5n+ 3

2
+ 6(n+ 1) + 9i (10)

wtα13(C
(j)
3 ) = 7n+ 10 + 13i (11)

Equation (10) constitute an arithmetic progression with a = 17n+15
2 and a common difference d = 9. Equation (11)

constitute an arithmetic progression with a = 7n+ 10 and a common difference d = 13.

This completes the proof of our theorem.

3. Cycle antimagic labeling of Disjoint union of L(Sn)

Theorem 3.1. Let line graph L(Sn) of sun-let graph Sn, n ≥ 3 admits a C3-supermagic labeling. Then the disjoint union

of arbitrary number of copies of L(Sn), i.e. sL(Sn) also admits a C3-supermagic labeling for s ≥ 1 a positive integer.

Proof. In the proof of our theorem, Γ denotes L(Sn), uk, k = 1, 2, . . . , s, denotes a vertex or an edge in the kth copy

of the line graph Γ = L(Sn) of a sun-let graph, denoted by Γ(k) := L(Sn)(k), corresponding to u in Γ = L(Sn), i.e.,

u ∈ V (L(Sn)) ∪ E(L(Sn)). In the same way C
(r)
3 (k), k = 1, 2, . . . , s, r = 1, 2, . . . , n, be the subgraph in the kth copy of

L(Sn) corresponding to the subgraph C
(r)
3 in L(Sn).

The total labeling α′ of sΓ is defined as:

α′(uk) =

{
m(α(u)− 1) + k if u ∈ V (Γ)

mα(u) + 1− k if u ∈ E(Γ)

First, we will prove that vertices of
⋃s

k=1 Γ
(k) use integers from 1 up to ps under the labeling α where p is number of vertices

in graph Γ. i.e.,

α′(V (Γ(k))) =



{1, s+ 1, 2s+ 1, . . . , (p− 1)s+ 1}
k = 1

{2, s+ 2, 2s+ 2, . . . , (p− 1)s+ 2}
k = 2

. . .

{j, s+ j, 2s+ j, . . . , (p− 1)s+ j}
k = j

. . .

{s, 2s, 3s, . . . , ps} k = s

(12)

Secondly, for edges of
s⋃

k=1

Γ(k) under the labeling α with |E(Γ)| = q, we have:

α′(E(Γ(k))) =



{(p+ 1)s, (p+ 2)s, (p+ 3)s, . . . }
∪{(p+ q)s} k = 1

{(p+ 1)s− 1, (p+ 2)s− 1, }
∪{(p+ 3)s− 1, . . . , (p+ q)s− 1}
k = 2

. . .

{(p+ 1)s+ 1− j, (p+ 2)s+ 1− j}
∪{(p+ 3)s+ 1− j, . . . , (p+ q)s+ 1− j}
k = j

. . .

{ps+ 1, (p+ 1)s+ 1, (p+ 2)s+ 1, . . . }
∪{(p+ q − 1)s+ 1}
k = s

(13)

From equations (12) and (13), it is clear the labeling α′ is a total labeling since α′ is a bijection between the integers

{1, 2, . . . , (p+ q)s} and the vertices and edges of
⋃m

k=1 Γ
(k).
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Under the total labeling α′, the C
(r)
3 (k)-weights, 1 ≤ k ≤ s, 1 ≤ r ≤ n would be:

wtα′(C
(r)
(3,k)) =

∑
v∈V (C

(r)
3 (k))

α′(v) +
∑

e∈E(C
(r)
3 (k))

α′(e)

=
∑

v∈V (C
(r)
3 (k))

(s(α′(v)− 1) + k)+

+
∑

e∈E(C
(r)
3 (k))

(sα′(e) + 1− k)

= s
∑

v∈V (C
(r)
3 (k))

α′(v)− s|V (C
(r)
3 (k))|+

+ k|V (C
(r)
3 (k))|+ s

∑
e∈E(C

(r)
3 (k))

α′(e)+

+ |E(C
(r)
3 (k))| − k|E(C

(r)
3 (k))|

where n is the number of C3’s in Γ(k).

wtα′(C
(r)
(3,k)) = s

 ∑
v∈V (C

(r)
3 (k))

α′(v) +
∑

e∈E(C
(r)
3 (k))

α′(e)

−

− s|V (C
(r)
3 (k))|+ |E(C

(r)
3 (k))|

+ k|V (C
(r)
3 (k))| − k|E(C

(r)
3 (k))|

= swtα′(C
(r)
3 (k))− s|V (C

(r)
3 (k))|+

+ |E(C
(r)
3 (k))|+ k|V (C

(r)
3 (k))|−

− k|E(C
(r)
3 (k))|.

As every C
(r)
3 (k), k = 1, 2, . . . , s, r = 1, 2, . . . , n, is isomorphic to the cycle C3, it holds

|V (C
(r)
3 (k))| = |V (C3)| = 3

|E(C
(r)
3 (k))| = |E(C3)| = 3

Thus for the C3-weights, we get

wtα′(C
(r)
3 (k)) = swtα′(C

(r)
3 ) + 3(1− s)

=
s

2
(29n+ 43) + 3(1− s)

=
s

2
(29n+ 35) + 3.

It is easy to see that the set of all C
(r)
3 (k)-weights in

s⋃
k=1

Γ(k) consists of same integers. Thus the graph
s⋃

k=1

Γ is a C3-

supermagic.

This completes the proof of our theorem.
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