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Abstract

Augmented Lagrange multiplier method is an important method to solve constrained optimization problems. In recent
years, it has become more important to study the application of augmented Lagrange multiplier method. This paper
first introduces the augmented Lagrange multiplier method, which leads to the development of the application of the
augmented Lagrange method to nonlinear mathematical equations, and summarizes the augmented Lagrange multiplier.
The application of nonlinear mathematical equations. At the same time, the paper specifies the application of the aug-
mented Lagrange method in urban and rural multi-objective programming, and proves the practical application of the
augmented Lagrange multiplier nonlinear mathematical equations.

Keywords: Augmented Lagrange multiplier method, Town and Country Planning, multi-objective programming, non-
linear mathematical equations.

1. Introduction

When solving the optimization problem with constraints, there is an important method to transform the constraint op-

timization problem into an unconstrained optimization problem by a suitable method. In the topic of seeking the best

solution, the Lagrange multiplier method, named after the famous American scholar Joseph, is a method to explore the

extremum of ternary functions. There are several conditions that restrict the variables of such functions. Its main solution

is to convert a problem with the optimal solution of n variables and k constraints into an extremum problem of a system

of equations with n+ k variables. The variables here have a feature, no Any constraint is called an unconstrained variable.

This method introduces a scalar unknown that has not been passed, that is, the Lagrange function parameter [1].

Among the problems encountered, the augmented Lagrange multiplier method is regarded as an important method to

solve the constrained optimization problem. In recent years, it has been applied in many important scientific fields such

as engineering, national defence, economics, finance and social sciences [2]. For example, the horizontal well perforation

optimization design problem based on the Lagrange multiplier method is to first adopt the augmented Lagrange multiplier

method, and then combine the reservoir seepage model to consider the horizontal well bottom flow pressure. Or, in the

case of constant production, the maximum production and minimum downhole flow pressure are required for research, and

the logarithmic diversion is optimized for the perforation density of horizontal wells. The application of the augmented

Lagrange multiplier method involves many aspects. Therefore, the study of the application of the augmented Lagrange

multiplier method has great significance.

2. Augmented Lagrange Multiplier Method

2.1 Constrained nonlinear programming

Solving the usual problem of not linear programming is much more troublesome than unconstrained and linear programming

problems. Now, we consider a simple example illustrate this fact. Consider the problem [3]
min f(x) = x2

1 + x2
2,

s.t. x1 + x2 − 1 ≥ 0,

1− x1 ≥ 0,

1− x2 ≥ 0,

(1)

The above example 1 shows that for nonlinear programming problems, even if the constraints are linear, the optimal

solution is not necessarily at the vertices and this brings difficulties to solving them. On the other hand, due to the existence
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of the constraint, if there is no constraint, starting from any initial point x(0) and performing a one-dimensional search

along the negative gradient direction of f(x), the unconstrained minimum point (0, 0)
T
of the objective function is obtained.

However, with constraints, in order to make the one-dimensional search and obtain a feasible point, the step size must be

limited, so that we can only go to a point on the boundary, when x(0) is taken. When it is not on line x1−x2 = 0, the point

x(1) will not be the optimal solution x∗. Therefore, it is necessary to continue iterating to find a feasible point that has

not been seen, so that the objective function has a smaller value. However, a feasible point has not been found along the

negative gradient direction of f(x) at x(1), so the gradient iteration can no longer proceed, although it may be far from the

optimal solution. This is the essential difference between constrained nonlinear programming and unconstrained nonlinear

programming, and it is also the fundamental problem of solving constraint problems. In order to overcome such difficulties,

in other words, when the existing points are on the edge of the area, in order to continue the iteration, not only the demand

search direction has the possibility of lowering the objective function. There are also requirements to be feasible in this

direction. For example, there is a small line segment that is entirely contained within the feasible domain, and a direction

like this is called a feasible direction. Therefore, in the design of the iterative method for solving constrained nonlinear

programming, a falling feasible direction d(k) should be constructed at each iteration point x(k).

Another way to solve constrained nonlinear programming is to replace the original problem with its simple solution as a

new approximate solution to the original problem with a simpler problem with a better solution. For example, the nonlinear

function in the objective function and the constraint is replaced by their first-order Taylor polynomial or second-order Taylor

polynomial approximation, or by an unconstrained nonlinear programming approximation.

2.2 Penalty function outer point method

There is a class of penalty function methods that perform outside the feasibility area. It can also be called the outer point

method. It adds a matching penalty to the objective function for the iteration point that does not obey the constraint, but

does not target the feasible point. The iteration point of this method is often moved outside the feasible domain. Consider

general constraint optimization problems 
min f(x)

s.t. gi(x) ≥ 0, i = 1, · · · ,m,

hj(x) = 0, j = 1, · · · , l.
(2)

Define helper functions as:

F (x, σ) = f(x) + σP (x). (3)

Here P (x) can take the form

P (x) =

m∑
i=1

[max {0,−gi(x)}]α +

l∑
j=1

|hj(x)|β (4)

where α, β ≥ 1 is a constant, usually α = β = 2.

In this way, it turns into an unconstrained problem

min F (x, σ)
def
= f(x) + σP (x) (5)

where σ is a large positive number [4].

Generally speaking, we call σP (x) a penalty, σ a penalty factor and F (x, σ) is called a penalty function.

Case 1: Considering the nonlinear programming

Define the penalty function as:

F (x, σ) = (x1 − 1)
2
+ x2

2 + σ[max {0,−(x2 − 1)}]2

=

{
(x1 − 1)

2
+ x2

2, when x2 ≥ 1,

(x1 − 1)
2
+ x2

2 + σ(x2 − 1)
2
,when x2 < 1,

(6)

Solving minF (x, σ) with analytical method, there is

∂F

∂x1
= 2(x1 − 1),

∂F

∂x2
=

{
2x2,when x2 ≥ 1,

2x2 + 2σ(x2 − 1),when x2 < 1,
(7)

Taking ∂F
∂x1

= 0, ∂F
∂x2

= 0, we get

x∗
σ =

[
x1

x2

]
=

[
1
σ

1+σ

]
(8)
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When σ → +∞ , it is easy to see that

x∗
σ → x∗ =

[
1
1

]
(9)

x∗ happens to be the optimal solution for the nonlinear programming. The optimal solution without the constraint

problem obtained by the above described method will not satisfy the constraint in the normal case. This solution will live

outside the feasible domain. When σ increases, it gets closer to x∗, so this method is called the external point method. In

the actual calculation process, it is very necessary to consider how to choose the penalty factor σ. When we encounter this

kind of situation, our way is to take a positive series {σk} that is close to infinity and strictly increasing.

min f(x) + σkP (x) (10)

2.3 Lagrange multiplier method

If f, gi, hj are differentiable then for question (11), a Lagrange function can be established:

Kuhn-Tucher condition [5] for nonlinear programming (11) is: if f, gi, hj are differentiable and

∇gi(x
∗), i ∈ I(x∗),∇hj(x

∗), j = 1, · · · , l

are linearly independent then the necessary condition for ∇gi(x
∗), i ∈ I(x∗),∇hj(x

∗), j = 1, · · · , l to be the optimal solution

of (11) is that there are corresponding Lagrange multipliers λ∗ and µ∗ where I(x∗) = {i|gi(x∗) = 0} is called the set of

effective constraint indicators for x∗. The feasible point that satisfies the K-T condition becomes the K-T point and ate

the most advantageous point.

Case 2: Consider the following nonlinear programming and finding its K-T point, such that
min f(x) = x2

1 + x2

g1(x) = −x2
1 − x2

2 + 9 ≥ 0

g2(x) = −x1 − x2 + 1 ≥ 0

(11)

Solution: The K-T condition for nonlinear programming is here[
2x1

1

]
− λ1

[
−2x1

−2x2

]
− λ2

[
−1
−1

]
= 0 (12)

λ1(−x2
1 − x2

2 + 9) = 0 (13)

λ2(−x1 − x2 + 1) = 0 (14)

λ1 ≥ 0, λ2 ≥ 0 (15)

Coupled with constraints
−x2

1 − x2
2 + 9 ≥ 0

−x1 − x2 + 1 ≥ 0
(16)

(1) If the (14) equation is not true, then (15) has λ1 = 0, and then (13) gives λ2 = −1, which contradicts (16). Therefore,

the (15) equation equal sign must be established.

(2) If the (17) equation is not true, then (16) has λ2 = 0 and substitutes (2.2)

x1(1 + λ1) = 0, 1 + 2λ1x2 = 0, (17)

From the first formula in λ1 ≥ 0 and (18), we get x1 = 0. Substituting the second formula of (16) (the equal sign is

established) and the contact (18), and λ1 = 1
6 , x2 = −3 is obtained.

(1) If the equation (17) is equal, there are two equations (16) and (17) to solve two points x =
(

1+
√
17

2 , 1−
√
17

2

)T

and(
1−

√
17

2 , 1+
√
17

2

)T

.

Note that the formula (15), from the first line equation in (12), knows that x1 cannot take 1+
√
17

2 , and if 1−
√
17

2 is taken,

then x2should take 1+
√
17

2 , which makes the second line equation in (12) impossible. . Therefore, there is a unique K-T

point for the nonlinear programming sought.
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2.4 Augmented Lagrange Multiplier Method

The augmented Lagrange multiplier method is a way of connecting the penalty function outer point method based on the

Lagrange multiplier method. Its basic idea is to put the Lagrange multiplier into punishment. In the function, to establish

an augmented Lagrange function, the search for the optimal solution in the process, through the constant penalty factor

and Lagrange adjustment of the multiplier, in order to get the effect of Lagrange is different Based on the lowest point

Lagrange function for solving the unconstrained minimum optimization and the limit of the original objective function near

the extreme point of the Lagrange function, a convergence criterion close to the optimal solution is obtained [6]. Considering

the problem (A), an augmented Lagrange function can be constructed

F (x, λ, µ, σ) = f(x) +
1

2σ

m∑
i=1

{
[max(0, λi − σgi(x))]

2 − λi
2
}

−
l∑

j=1

µjhj(x) +
σ

2

l∑
j=1

h2
j (x). (18)

2.4.1 Consider a nonlinear optimization problem with only equality constraints{
minf(x)

hi(x) = 0 i = 1, · · · ,m
(19)

Then the Lagrange function of the optimization problem is

F (x, λ, c) = f(x) +
m∑
i=1

λihi(x) +
c

2

m∑
i=1

[Hi(x)]
2

(20)

Among them, c is a positive penalty coefficient.

The basic idea of the augmented Lagrange function method is to gradually approach the solution of the optimization

problem (19) by solving the rotation of the unconstrained optimal problem (20) given by the given value and adjusting

the values of λ and c. Therefore, the solution to the constrained optimization problem can be solved as an unconstrained

optimization problem. In this way, this method has the advantages of the Lagrange function method and the penalty

function method on the one hand, and on the other hand, it overcomes the disadvantages of their existence, and is called

a more useful solution to the nonlinearity. A method of constraining optimization problems.

Example 2.1 (Solving problems with the multiplier method). Consider the following problem:{
min 2x2

1 + x2
2 − 2x1x2,

s.t. h(x) = x1 + x2 − 1 = 0.
(21)

Consider

ϕ (x, µ, σ) = 2x2
1 + x2

2 − 2x1x2 − µ(x1 + x2 − 1)
2

(22)

Take σ = 2, µ(1) = 1, and solve minϕ(x, 1, 2) by analytical method, and the minimum point is

x(1) =

[
x
(1)
1

x
(1)
2

]
=

[
1
2
3
4

]
(23)

Fix µ has µ(2) = µ(1)− σh(x(1)) = 1− 2 · 1
4 = 1

2 . Then solve minϕ
(
x, 1

2 , 2
)
again, get x(2), and continue like this. In

general, at the kth iteration, the minimum point of ϕ(x, µ(k), 2) is

x(k) =

[
x
(k)
1

x
(k)
2

]
=

[
1
6 (µ

(k) + 2)
1
4 (µ

(k) + 2)

]
(24)

µ(k+1) =
1

6
µ(k) +

1

3
(25)

It is easy to see that at time k → +∞ , µ(k) → 2
5 , x(k) →

(
2
5 ,

3
5

)T
, respectively, the optimal nonlinear programming, the

optimal multiplier and the optimal solution are calculated.
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2.4.2 Considering inequality constraints

First consider the problem with only inequality constraints{
min f(x)

s.t. gi(x) ≥ 0,

i = 1, 2, · · · ,m. Using the result of the equality constraint, introduce the variable yi and convert the above into the equality

constraint problem {
min f(x)

s.t. gi(x)− y2i ≥ 0,

i = 1, 2, · · · ,m. Thus, the augmented Lagrange function can be defined:

φ̃(x, y, µ, σ)

= f(x)−
m∑
i=1

µi(gi(x)− y2i ) +
σ

2

m∑
i=1

(gi(x)− y2i )
2

(26)

Thus turning the problem into solving min ϕ̃(x, y, µ, σ),, to rewrite the form of ϕ̃ to

φ̃(x, y, µ, σ)

= f(x) +

m∑
i=1

{
σ

2

[
y2i −

1

σ
(σgi(x)− µi)

]2
− µ2

i

2σ

}
(27)

In the form of ϕ̃, it can be seen that for ϕ̃ to be extremely small, the value of y2i must be y2i = 1
σ [max {0, σgi(x)− µi}]2.

Thus, the above formula can be substituted for ϕ̃ to eliminate yi, thus defining an augmented Lagrange function.

φ̃(x, µ, σ) = f(x) +
1

2σ

m∑
i=1

{
[max(0, µi − σgi(x))]

2 − µ2
i

}
(28)

To sum up, the inequality constraint problem can be changed to the unconstrained problem min φ̃(x, µ, σ).

2.5 Calculation of augmented Lagrange multiplier method

First definition of semi-smooth function [7]: Let G : ℜn → ℜm, be a partial Lipschitz continuous map. We call it G in

x ∈ ℜn is semi-smooth, when

(i) G is directional at x;

(ii) for any of ∆x ∈ ℜn and H ∈ ∂G(x+∆x), and∆x → 0

G(x+∆x)−G(x)−H(∆x) = (∥∆x∥) (29)

Further, G is said to be strongly semi-smooth at x ∈ ℜn, if G is semi-smooth at x, and for any ∆x ∈ ℜn and

H ∈ ∂G(x+∆x) ∆x → 0 , there is

∥x− x̂∥ = min {∥x− y∥ : y ∈ C} (30)

Let x̂ be the projection of x on set C, denoted
∏

C(x). Therefore, the projection operator
∏

C : ℜn → C is defined for

each x ∈ ℜn and is non-expanded. Algorithm: Select the initial point x1 ∈ Ω, uk ∈ ℜm
+ of the original problem, then the

k + 1 point iteration point xk+1, uk+1 is calculated by:

xk+1 ∈ argmin
{

1
2∥y − xk∥2 + σF (xk+1, y, uk)

∣∣∣y ∈ Ω
}
,

uk+1 =
∏

+(u
k + σg(xk+1))

(31)

3. Augmented Lagrange function optimization
method for urban and rural planning

3.1 The establishment of urban and rural planning model

Urban and rural planning has always been an important goal in the urban and rural management category [8]. According

to its special characteristics of urban and rural margins, in the urban and rural planning, the total variation minimization

model has obvious priority [9]. The urban and rural planning model is expressed as:

y = Ax+ n (32)
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Among them, y is degenerate urban and rural, n is noise [10] (this kind of noise is generally Gaussian white noise or

salt and pepper noise, only Gaussian white noise is considered), A is a linear degradation operator (generally written in

convolution form) x is the original urban and rural area to be restored.

The urban-rural restoration is caused by the degraded urban and rural y and the operator A to restore the high degree

of urban and rural x at the beginning. Urban and rural restoration models often have reliability and regularization terms:

min
x

f(x) = λφ(x) + ∥Ax− y∥2F (33)

Where φ(x) is a regular term and λ > 0 is a regularization parameter. The all-variation model suppresses urban-rural

noise [11], so it is widely used in urban and rural recovery. Given a two-dimensional gravy-scale urban-rural x of m×n, its

discrete total variational model can be defined as:

TV (x) = ∥(Dhx,Dvx)∥ (34)

According to the norm of the matrix used, it is possible to distinguish the isotropic and anisotropic total variation TV

more strongly.

TViso(x) = ∥(Dhx,Dvx)∥iT
=

m∑
i=1

n∑
j=1

√
(Dhx)

2
i,j + (Dvx)

2
i,j

(35)

TVaniso(x) = ∥(Dhx,Dvx)∥aT
= ∥Dhx∥l1 + ∥Dvx∥l1

(36)

Here, the former Dh and Dv refer to the horizontal direction, the latter refers to the gradient operator in the vertical

direction, and the matrix l1 norm adds the absolute values of the all elements. The all-variation urban-rural planning model

is:

argmin
x

f(x) = λTV (x) +
1

2
∥Ax− y∥2F (37)

About the issue of urban and rural recovery, isotropic TV usually achieves better recovery. Therefore, we consider the

algorithm of the recovery model for the general variation of the isotropic nature of urban and rural areas.

3.2 Augmented Lagrange Function Algorithm for Urban and Rural Planning Problems

Substituting the auxiliary variable u for x in TV , the equivalent of (39) becomes the solution to the equality constraint

problem:  argmin
x,u

λTV (u) + 1
2∥Ax− y∥2F

s.t. u = x
(38)

Substituting isotropic TV into (39) gives you:

argmin
x

f(x) = λ∥ (Dhx,Dvx) ∥iT +
1

2
∥Ax− y∥2F (39)

Adding the auxiliary variables uand v, (41) can become the following equation constraint optimization problem: argmin
u,v,x

λ∥ (u, v) ∥2 +
1
2∥Ax− y∥2F

s.t. u = Dhx, v = Dvx
(40)

Through the transformation of the above various types, the original all-variation urban-rural planning problem is

transformed into an equivalent equation-constrained optimization problem, and further, the augmented Lagrange algorithm

can be used to efficiently solve the above-mentioned equality constraint problem. Solve. The augmented Lagrange function

corresponding to (40) is:

L(x, u, κ, δ)

= λTV (u) +
1

2
∥Ax− y∥2F + κT (u− x) +

δ

2
∥Ax− y∥2F (41)

Where κ is the Lagrange multiplier and σ ≥ 0 is the penalty parameter.

The augmented Lagrange method has the advantages of unconditional convergence, which makes it have unique advan-

tages in urban and rural planning problems.
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The objective function (43) can be modified to obtain a modified augmented Lagrange objective function form:

L(x, u, p, δ) = λTV (u) +
1

2
∥Ax− y∥2F +

δ

2
∥u− x+ p∥2F (42)

In order to make the solution easier, we use the inexact augmented Lagrange method to solve the problem by alternately

updating the x and u strategies. Methods as below:

xk+1 = (AHA+ δk)
−1

(AHy + δk(uk + pk)) (43)

uk+1 = argminuλ/δkTViso(u) +
1

2
∥u− (xk+1 − pk)∥2F (44)

pk+1 = pk + uk+1 − xk+1

δk+1 = pδk

Where AH represents the conjugate transpose of matrix A, 1 ≤ ρ ≤ 2 . If A is a convolution operator, you can use

Fast Fourier Transform or Discrete Cosine Transform to calculate Ax and AHy. Equation (46) is an urban-rural issue.

Theoretical analysis shows that when δ∞ < δmax, the convergence and the optimality of the solution can be verified. If you

take ρ = 1, you can get the alternate direction multiplier method. Many urban and rural reduction algorithms based on

augmented Lagrange are solved using the alternating direction multiplier method.

4. Conclusion

The augmented Lagrange multiplier method is used as a solution to the constraints and then the best solution for engineering,
defence, economics, finance and social sciences. Therefore, it is of great significance to explore the augmented Lagrange
multiplier method. By explaining the generation and development of the augmented Lagrange multiplier method, augmented
Lagrange multiplier method is better applied. Among them, the augmented Lagrange multiplier method is a combination
of the penalty function outer point method and the Lagrange multiplier method, and the solution accuracy is high, which
is a very practical design optimization method. This paper illustrates the augmented Lagrange penalty in the application
process through the practical application example. Firstly, the mathematical model is established for the actual problem.
Then the method can speed up the process of finding the optimal result and make the optimal result more accurate.
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