Antimagic Behavior of SG_n^p and its Subdivision

M. Awais^{1,2}, Zulfiqar Ahmed¹, C. Y. Jung^{3*}

¹School of Engineering and Applied Sciences, Department of Computer Science, GIFT University, Gujranwala, Pakistan ²School of Mathematics and Statistics, Southwest University, Chongqing, China

 3Gyeongsang National University, Jinju 52828, Korea

(Received: 2 January 2023. Received in revised form: 23 October 2023. Accepted: 2 November 2023. Published online: 5 November 2023.)

Abstract

A finite simple graph G with a subgraph H is called a super (b, d)-H-antimagic: if G has an edge covering by subgraphs H_1, H_2, \ldots, H_t with each $H_i \cong H, i = 1, 2, \ldots, t$, a total labeling α such that $wt_{\alpha}H$, constitutes an arithmetic progression and $\alpha(V(G))$ consists of the smallest possible integers. In this manuscript, we investigated the existence of super (b, 1)-star-antimagic labeling of Sun graphs SG_n^p .

Keywords: Star graph S_n , Sun graph SG_n^p , super (b, 1)- S_{p+2} -antimagic.

1. Introduction

If each edge of a graph G belongs to one of the subgraphs H_1, H_2, \ldots, H_t with $H_i \cong H, H_i, i = 1, 2, \ldots, t$ then G admits an *H*-covering. A graph G with an *H*-covering is (b, d)-*H*-antimagic if for a total labeling $\alpha : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\}$, the *H*-weights,

$$wt_{\alpha}(H) = \sum_{x \in V(H)} \alpha(x) + \sum_{y \in E(H)} \alpha(y)$$

constitute an arithmetic progression $\{b, b+d, \ldots, b+(t-1)d\}$, where b > 0 and $d \ge 0$ are two integers and t is the number of all subgraphs $H_i \cong H$. Furthermore, α is super (b, d)-H-antimagic labeling if $\alpha(V(G)) = \{1, 2, \ldots, |V|\}$.

The (super) *H*-magic graph was first introduced by Gutiérrez and Lladó in [4]. Proved results are about: star $K_{1,n}$ graphs, complete bipartite graphs $K_{n,m}$, paths P_n , cycles C_n , wheels, windmills, books, prisms, shrubs and banana tree graphs. Lladó and Moragas [9] investigated C_n -(super)magic graphs and proved that wheels, windmills, books and prisms are C_h -magic for some h. Some results on C_n -supermagic labelings of several classes of graphs can be found in [13]. Maryati et al. [10] gave P_h -(super)magic labelings of shrubs, subdivision of shrubs and banana tree graphs. Other examples of *H*-supermagic graphs with different choices of *H* have been given by Jeyanthi and Selvagopal in [8]. Maryati et al. [11] investigated the *G*-supermagicness of a disjoint union of *c* copies of a graph *G* and showed that disjoint union of any paths is cP_h -supermagic for some *c* and *h*. The (b, d)-*H*-antimagic labeling was introduced by Inayah et al. [6]. Inayah et al. in [6], [7] introduced (b, d)-*H*-antimagic labeling for some shackles of a connected graph *H*.

The present paper investigated the super (b, 1)- S_{p+2} -antimagic labeling of Sun graphs SG_n^p with p pendant edges.

2. Star antimagicness of Sun graphs

A star graph S_n is a tree consisting of one vertex adjacent to *n* vertices. In other words, a complete bipartite graph $K_{1,n}$ is called a Star S_n .

The Sun graph SG_n^p , $n \ge 3, p \ge 1$, is constructed from a cycle C_n by inserting p pendant edges with every vertex of the C_n . The vertices and edges on the cycle will be called the *cycle vertices* and the *cycle edges* respectively. The remaining edges will be termed as the *pendant edges* and their end points as *pendant vertices*. The Sun Graph SG_n^p contains n(p+1) vertices and edges.

$$V(SG_n^p) = \{x_i, y_i^j : 1 \le j \le p\}, \text{ and}$$
$$E(SG_n^p) = \{x_i x_{i+1}, x_i y_i^j : 1 \le j \le p\},$$

where indices i are taken modulo n.

^{*}Corresponding author (chahnyongjung@gmail.com)

2.1 Super S_{p+2} -antimagic Labeling of Sun Graph SG_n^p

Let S_{p+2} be a star on p+3 vertices. Every star S_{p+2}^k , $k=1,2,\ldots,n$ in SG_n^p has the vertex set

$$V(S_{p+2}^{(k)}) = \{x_{k-1}, x_k, x_{k+1}\} \cup \{y_k^j : 1 \le j \le p\}$$

and the edge set

$$E(S_{p+2}^{(k)}) = \{x_{k-1}x_k, x_kx_{k+1}, x_ky_k^j : 1 \le j \le p\},\$$

where indices are taken modulo n. Under a total labeling α , the $S_{p+2}^{(k)}$ -weights are:

$$wt_{\alpha}(S_{p+2}^{(k)}) = \sum_{v \in V(S_{p+2}^{(k)})} \alpha(v) + \sum_{e \in E(S_{p+2}^{(k)})} \alpha(e).$$

$$= \sum_{s=k-1}^{k} (\alpha(x_s) + \alpha(x_s x_{s+1})) + \alpha(x_{k+1}) + \sum_{s=1}^{p} (\alpha(y_k^s) + \alpha(y_k^s x_k))$$

$$= Sum_1 + Sum_2$$
(1)

where

$$Sum_{1} = \sum_{s=k-1}^{k} \left(\alpha(x_{s}) + \alpha(x_{s}x_{s+1}) \right) + \alpha(x_{k+1})$$
(2)

$$Sum_2 = \sum_{s=1}^{p} \left(\alpha(y_k^s) + \alpha(y_k^s x_k) \right) \tag{3}$$

Theorem 2.1. The Sun graph SG_n^p admits a super (b, 1)- S_{p+2} -antimagic labeling where $n \ge 3$, $p \ge 1$ are positive integers and S_{p+2} is a star on p+3 vertices.

Proof. Proof is divided into two parts:

In the first part, we give a P_3 -antimagic labeling of cycle C_n . In second part, we show that weights of pendant edges with P_3 -antimagic labeling of cycle C_n gives us super (b, 1)- S_{p+2} -antimagic labeling. The total labeling α for cycle C_n is defined as:

he total labeling
$$\alpha$$
 for cycle C_n is defined as:

$$\begin{aligned} \alpha(x_i) &= i \\ \alpha(x_i x_{i+1}) &= 2n(p+1) + 1 - i \end{aligned}$$

where indices are taken modulo n. Under labeling α , cycle vertices are labeled with $\{1, 2, \ldots, n\}$ and cycle edges are labeled with $\{n(2p+1)+1, 2, \ldots, 2n(p+1)\}$.

Using (2) and above labeling, the sum for $P_3^{(k)}$ -weights are:

$$Sum_{1} = \alpha(x_{k-1}) + \alpha(x_{k}) + \alpha(x_{k+1}) + \alpha(x_{k-1}x_{k}) + \alpha(x_{k}x_{k+1})$$

= $3k + 4n(p+1) + 3 - 2k$
= $4n(p+1) + 3 + k$ (4)

which shows a super P_3 -antimagic labeling of cycle C_n .

For j = 1, 2, ..., p and $j \equiv 1 \pmod{2}$, the labeling of pendent edges and their end vertices is defined as:

$$\{\alpha(y_i^j), \alpha(x_i y_i^j)\} = \{(j+1)n + 1 - i, (p+j)n + i\}$$

For $j = 1, 2, ..., p, j \equiv 0 \pmod{2}$

$$\{\alpha(y_i^j), \alpha(x_i y_i^j)\} = \{jn+i, (p+j+1)n+1-i\}$$

where the smallest possible labels $\{n+1, n+2, \ldots, n(p+1)\}$ appear on the end vertices of pendant edges and the pendant edges receive labels $\{n(p+1)+1, n(p+1)+1+2, \ldots, n(2p+1)\}$. Therefore α is total labeling of SG_n^p . Also, for $j = 1, 2, \ldots, p$

$$\alpha(y_i^j) + \alpha(x_i y_i^j) = n(p+2j+1) + 1 \tag{5}$$

Using (3) and (5), we have

$$Sum_2 = \sum_{s=1}^{p} \left(\alpha(y_{(k,s)}) + \alpha(x_k y_{(k,s)}) \right) = p[2n(p+1) + 1]$$
(6)

Equation (1), (4) and (6) gives

$$wt_{\alpha}(S_{p+2}^{(k)}) = 4n(p+1) + 3 + k + p[2n(p+1) + 1].$$

= 2n(p+1)(p+2) + p + 3 + k

which consists of consecutive integers with initial term a = 2n(p+1)(p+2) + p + 4. This completes the proof.

2.2 $S_3(r)$ antimagic labeling of *r*-Subdivided Sun graph $SG_n^{(1)}(r)$

Let G(r) be a graph (denoted as r-subdivided graph of G) obtained from the graph G by inserting $r \ge 1$ new vertices into every edge of G.

Let $SG_n^1(r)$ be r-subdivided graph of Sun graph SG_n^1 with 2n(r+1) vertices and edges.

$$V(SG_n^1(r)) := \{x_{(i,j)}, y_{(i,j)} : 1 \le i \le n, 0 \le j \le r\}$$
$$E(SG_n^1(r)) := \{x_{(i,j)}x_{(i,j+1)}, y_{(i,j)}y_{(i,j+1)} : 0 \le j \le r-1\} \cup \{x_{(i,r)}x_{(i+1,0)}, y_{(i,r)}x_{(i,0)}\}$$

with indices are taken modulo n.

Let $S := S_3(r)$ be r-subdivided graph of star graph S_3 with 3(r+1) + 1 vertices and 3(r+1) edges. The k^{th} r-subdivided star $S^{(k)}$ has the vertex set

$$V(S^{(k)}) = \{x_{(k-1,0)}, x_{(k,0)}, x_{(k+1,0)}\}, \{y_{(k,j)} : 0 \le j \le r\}$$

and the edge set as follows:

 $E(S^{(k)}) = \{x_{(k-1,j)}x_{(k-1,j+1)}, x_{(k,j)}x_{(k,j+1)}, y_{(k,j)}y_{(k,j+1)} : 0 \le j \le r-1\} \cup \{y_{(k,r)}x_{(k,0)}, x_{(k,r)}x_{(k+1,0)}\}, \text{ where indices are taken modulo } n.$

Under a total labeling β , the $wt_{\beta}(S) := wt(S_3(r))$ are:

$$wt_{\beta}(S^{(k)}) = \sum_{v \in V(S^{(k)})} \beta(v) + \sum_{e \in E(S^{(k)})} \beta(e).$$

$$= \sum_{s=k-1}^{k+1} \beta(x_{(s,0)}) + \sum_{s=k-1}^{k} \sum_{j=0}^{r-1} \left(\beta(x_{(s,j)}) \beta(x_{(s,j+1)}) \right) + \sum_{s=k-1}^{k} \beta(x_{(s,r)} x_{(s+1,0)})$$

$$+ \sum_{j=0}^{r} \beta(y_{(k,j)}) + \sum_{j=0}^{r-1} \beta(y_{(k,j)}) \beta(y_{(k,j+1)}) + \beta(y_{(k,r)} x_{(k,0)})$$

$$= Sum_1 + Sum_2$$
(7)

where

$$Sum_{1} = \sum_{s=k-1}^{k+1} \beta(x_{(s,0)}) + \sum_{s=k-1}^{k} \sum_{j=0}^{r-1} \left(\beta(x_{(s,j)}) \beta(x_{(s,j+1)}) \right) + \sum_{s=k-1}^{k} \beta(x_{(s,r)} x_{(s+1,0)})$$
(8)

$$Sum_{2} = \sum_{j=0}^{r} \beta(y_{(k,j)}) + \sum_{j=0}^{r-1} \beta(y_{(k,j)}) \beta(y_{(k,j+1)}) + \beta(y_{(k,r)}x_{(k,0)})$$
(9)

Theorem 2.2. The Sun graph $SG_n(r)$ admits a super (b, 1)-S-antimagic labeling where $n \ge 3$, $r \ge 1$ are positive integers and S is an r-subdivided graph of S_3 .

Proof. Firstly, we give a $P_3(r)$ -antimagic labeling of r-subdivide cycle $C_n(r)$. The total labeling β for r-subdivided cycle $C_n(r)$ is defined as:

$$\beta(x_{(i,j)}) = nj + i \qquad j = 0, 1, 2, \dots, r$$

$$\beta(x_{(i,j)}x_{(i,j+1)}) = n(4r + 4 - j) + 1 - i \qquad j = 0, 1, 2, \dots, r - 1$$

$$\beta(x_{(i,r)}x_{(i+1,0)}) = n(4r + 4 - r) + 1 - i \qquad j = 0, 1, 2, \dots, r - 1$$

where indices are taken modulo n. Under labeling β , vertices of r-subdivided cycle are labeled with $\{1, 2, \ldots, n(r+1)\}$ and edges of r-subdivided cycle are labeled with $\{3n(r+1)+1, 3n(r+1)+2, \ldots, 4n(r+1)\}$.

Using (8) and above labeling, the sum for $P_3^{(k)}(r)$ -weights are:

$$\sum_{s=k-1}^{k+1} \beta(x_{(s,0)}) + \sum_{s=k-1}^{k} \sum_{j=0}^{r-1} \left(\beta(x_{(s,j)}) \beta(x_{(s,j+1)}) \right) + \sum_{s=k-1}^{k} \beta(x_{(s,r)} x_{(s+1,0)}) = (r+1) \{4n(r+1)+1\} + i$$

$$= (r+1)(4nr+4n+1) + i$$
(10)

which shows a super $P_3(r)$ -antimagic labeling of r-subdivided cycle $C_n(r)$. Labeling of pendent edges and their end points is defined as:

$$\beta(y_i^j) = n(2r+2-j) + 1 - i \qquad j = 0, 1, 2, \dots, r$$

$$\beta(y_i^j y_{(i,j+1)}) = n(2r+2+j) + i \qquad j = 0, 1, 2, \dots, r-1$$

$$\beta(y_{(i,r)} x_{(i,0)}) = n(2r+2-r) + i \qquad j = 0, 1, 2, \dots, r-1$$

where the smallest possible labels $\{n(r+1)+1, n(r+1)+2, \ldots, 2n(r+1)\}$ appear on the end points of pendant edges and the pendant edges receive labels $\{2n(r+1)+1, 2n(r+1)+2, \ldots, 3n(r+1)\}$. Therefore β is total labeling of SG_n^p .

$$\sum_{j=0}^{r} \beta(y_{(k,j)}) + \sum_{j=0}^{r-1} \beta(y_{(k,j)}) \beta(y_{(k,j+1)}) + \beta(y_{(k,r)}x_{(k,0)}) = (r+1)\{4n(r+1)+1\} = 4n(r+1)^2 + (r+1)$$
(11)

Using equations (7), (10) and (11), we get

$$wt_{\beta}(S^{(k)}) = 8n(r+1)^2 + 2(r+1)] + i$$
$$= 2(r+1) + (4nr+4n+1) + i$$

which constitute a sequence of consecutive integers with initial term $a = 8n(r+1)^2 + 2(r+1)] + i$. This completes the proof.

3. Conflict of Interests

The author(s) declare that there is no conflict of interests.

4. Acknowledgements

The authors are grateful for the valuable comments of the anonymous referees.

References

- Chen, Lian, Huiqin Jiang, Zehui Shao, and M. Ivanovic. "Dominator and total dominator colorings in vague graphs." Eng. Appl. Sci. Lett. 2, no. 2 (2019): 10-17.
- [2] W. Gao., Remarks on Fractional Locally Harmonious Coloring., Open J. Math. Sci., Vol. 2 (2018), Issue 1, pp. 301 306.
- W. Gao, Fakhir Aslam, Zohaib Zahid, Sohail Zafar., 3-total edge mean cordial labeling of some standard graphs., Open J. Math. Sci., Vol. 3 (2019), Issue 1, pp. 129 138.
- [4] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
- [5] N. Inayah, A. Lladó and J. Moragas, Magic and antimagic H-decompositions. Discrete Math., 312 (2012), 1367–1371.
- [6] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71 (2009), 273–281.
- [7] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australasian J. Combin. 57 (2013), 127–138.
- [8] P. Jeyanthi and P. Selvagopal, More classes of H-supermagic graphs, Internat. J. Algor. Comput. Math. 3 (2010), 93–108.
- [9] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 2925–2933.
- [10] T.K. Maryati, E.T. Baskoro and A.N.M. Salman, P_h-(super)magic labelings of some trees, J. Combin. Math. Combin. Comput. 65 (2008), 198–204.
- T.K. Maryati, A.N.M. Salman and E.T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, *Discrete Math.* 313 (2013), 397–405.
- [12] H. M. Nagesh, M. C. Mahesh Kumar., Block Digraph of a Directed Graph., Open J. Math. Sci., Vol. 2 (2018), Issue 1, pp. 202 208.
- [13] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math. 310 (2010), 1293–1300.
- [14] H. M. Nagesh & M. M. Kumar, Block digraph of a directed graph. Open J. Math. Sci., 2(3) (2018), 202-208.
- [15] Shah, Aqsa, S. A. U. H. Lingua, and S. A. U. H. Bokhary. "On chromatic polynomial of certain families of dendrimer graphs." Open Journal of Mathematical Sciences 3.1 (2019): 404-416.
- [16] Yan, L., MOHAMMAD REZA Farahani, and W. Gao. "Distance-based indices computation of symmetry molecular structures." Open Journal of Mathematical Sciences 2, no. 1 (2018): 323-337.