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Abstract

Graph theory is widely used to analyze the structure models in chemistry, biology, computer science, operations research
and sociology. Molecular bonds, species movement between regions, development of computer algorithms, shortest span-
ning tree in a weighted graphs, aircraft scheduling and exploration of diffusion mechanism are some of these structure
models. A computing system C can execute an algorithm A if A is graph-isomorphic to a subgraph of CG. This is equiv-
alent of defining a graph isomorphism between A and subgraph of CG. This research article gives a small description
of graph theory applications and one of graph model (zig-zag triangle) to define a suitable computer algorithm. Let Γ
be a connected, simple graph with finite vertices v and edges e. A family {Γ1,Γ2, . . . ,Γp} ⊂ Γ of subgraphs such that
for all e ∈ E, e ∈ Γl, for some l, l = 1, 2, . . . , p is an edge-covering of Γ. If Γl

∼= Γ′, ∀l, then Γ has an Γ′-covering.
Graph Γ with Γ′-covering is an (ad, d)-Γ

′-antimagic if f : V ∪ E → {1, 2, . . . , |V | + |E|} a bijection exists and the
sum over all vertex-weights and edge-weights of Γ′ form a set {ad, ad + d, . . . , ad + (p− 1)d}. The labeling ξ is super for
ξ(VΓ) = {1, 2, 3, . . . , |VΓ|} and graph Γ is Γ′-supermagic for d = 0. This manuscript investigates super (ad, d)-Γ

′-antimagic
labelings of zig-zag triangles for differences d = 1, 2, . . . , 8.

Keywords: Computer networks, graphical models, protein-protein networks, biology, chemistry, algorithms, applica-
tions, path, cycle, ladder, zig-zag triangle.

1. Introduction and Preliminaries

The research areas of sciences where networks constitute the basic and fundamental study blocks, graph theory (graph

labeling, graph coloring etc.) is the most intuitive and fundamental approach to apply and study these sciences. For example:

(i) in computer sciences [18], data mining, database designing, image processing, network algorithms, resource allocation,

clustering of web documents [16], mobile phone networks(GSM phones) and bi-processor tasks. (ii) in chemistry study of

molecular bonds, molecular descriptors, three dimensional complicated simulated structure of atoms and chemoinformatics

are some study blocks. (iii) in biology, protein-protein interaction networks, cell biology structure, population genetics,

bioinformatics and sequences of cell-samples are some of them. (iv) in operations research, travelling sales man problem,

optimization using PERT(Project Evaluation Review Technique), minimum sum coloring, job and time table scheduling

[19, 26], game theory. All these applications of graph theory generally requires study and analyzing technique for network

algorithms. These algorithms can be one of these:

� Shortest path algorithm

� Planar graphs

� Searching algorithms (DFS, BFS)

� Cycles of different lengths

� Adjacency and Incidence matrices

� Connectedness in a network

Several computer algorithms are being designed to study these types of networks [23, 27]. For example, Python package,

GASP, SPANTREE, IGTS, GIRL, GRASPE, AMBIT etc. In this research article, we focus on graphical representation

of algorithms [25]. A graph representing an algorithm is called as facility graph, where vertices of graphs represents the

facilities that execute that algorithm and edges represents the links between these facilities. Let CG represents the graphical

representation of a computing system. A computing system C can execute an algorithm A if A is graph-isomorphic to a

subgraph of CG. This is equivalent of defining a graph isomorphism between A and subgraph of CG or graph embedding

of A in CG. Several computing systems have been designed using this idea of graph isomorphisms and region adjacency
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graphs. For example, (i) the optimal k-FT single loop system [22], fault tolerant computing systems, symbol recognition by

error tolerant subgraph [28], automatic channel allocation for wireless networks [17, 23], clustering of web documents [16]

and sensor networks [27]. In graph labeling this idea is equivalent of finding an edge-covering of a graph. More specifically,

Γ′-covering of a simple graph Γ, where Γ′ should be isomorphic to one fixed subgraph Γ” of Γ.

Gutiérrez and Lladó in [11] defined the Γ′-supermagic graphs for K1,m, Kp,m, Pm and for Cm for some subgraph Γ′.

Jeyanthi et al. [13] proved Γ′-supermagic results for 2-connected graphs, k-polygonal snake and one point union of m-

disjoint paths. kCm-path, Γ ∼= K1,m +K1, book, ladder related graphs are Γ′-supermagic proved by [7]. Inayah et al. [12]

introduced Γ′-antimagic graphs with weights forming an arithmetic progression. She also proved some bounds for ad and

d for general graphs and fans. Faisal [33] derived bound for cycle-antimagic labeling of disjoint union of cycles. Recent

results on Γ′-antimagic labeling of graphs can be seen in [8, 15, 28–32]. The (super) Γ′-antimagic labeling also related to

a (super) d-antimagic labeling of type (1, 1, 0) of a plane graph [3]: a generalization of a face-magic labeling introduced by

Lih [5]. Baca et al. proved d-antimagic labeling of type (1, 1, 1) for toroidal fullerenes in [4] while in [1] baca et al. proved

labeling for plane graphs containing Hamiltonian paths.

In this research article, we examined the existence of a super (ad, d)-Γ
′-antimagic labeling for zig-zag triangles.

2. Main Results

A zigzag-triangle ZTm is constructed from path Pm by inserting m new vertices and 3m−2 new edges. For a zig-zag triangle,

V (ZTm) = V (Pm)∪{bi : 1 ≤ i ≤ m} = {ai, bi : 1 ≤ i ≤ m} and E(ZTm) = {aibi : 1 ≤ i ≤ m}∪ {aiai+1, aibi+1, ai+1bi : 1 ≤
i ≤ m− 1}. Figure 1 represents a zig-zag triangle ZTm.
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Figure 1: Zig-zag triangle ZTm.

From figure 1, it is clear that zig-zag triangle has C3 coverings of type C
(k)
i , i = 1, 2, . . . , ⌊m

2 ⌋, k = 1, 2, 3, 4, where C3

is cycle on three vertices. The cycle C
(1)
i has the form {a2i−1a2ib2i−1a2i−1}, C

(2)
i has the form {a2i−1a2ib2ia2i−1} for

i = 1, 2, . . . , ⌊m
2 ⌋, C

(3)
i has the form {a2ia2i+1b2ia2i} and C

(4)
i has the form {a2ia2i+1b2i+1a2i} for i = 1, 2, . . . , ⌈m−1

2 ⌉.

Partial sum of the sub-cycle

Under the total labeling f , the C3-weights of C
k
i ’s, i = 1, 2, . . . , ⌊m

2 ⌋, k = 1, 2 are:

wtf (C
(1)
i ) = f(a2i−1) + f(a2i) + f(b2i−1) + f(a2i−1a2i)+

+ f(a2ib2i−1) + f(a2i−1b2i−1) (1)

wtf (C
(2)
i ) = f(a2i−1) + f(a2i) + f(b2i) + f(a2i−1a2i)+

+ f(a2ib2i) + f(a2i−1b2i) (2)

The C3-weights of C
(k)
i s for i = 1, 2, . . . , ⌈m

2 ⌉, k = 3, 4 are:

wtf (C
(3)
i ) = f(a2i) + f(a2i+1) + f(b2i)+

+ f(a2ia2i+1) + f(a2i+1b2i) + f(a2ib2i) (3)

wtf (C
(4)
i ) = f(a2i) + f(a2i+1) + f(b2i+1) + f(a2ia2i+1)+

+ f(a2i+1b2i+1) + f(a2ib2i+1) (4)

The next theorems prove the existence of a super (a1, d)-C3-antimagic labeling for zig-zag triangles where d ∈ {1, 2, . . . , 8}.

Theorem 2.1. The zigzag-triangle ZTm,m ≥ 2 possesses a super (a1, 1)-C3-antimagic labeling.

Proof. The total labeling fd for difference d = 1 is defined as:

f1(ai) =
⌈m
2

⌉
+ i, i = 1, 2, . . . ,m
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f1(bi) =

{
i+1
2 i ≡ 1 (mod 2)⌈
3m
2

⌉
+ i

2 i ≡ 0 (mod 2)

f1(aibi) =

{
3m− i−1

2 i ≡ 1 (mod 2)⌈
5m+1

2

⌉
− i

2 i ≡ 0 (mod 2)

f1(aiai+1) = 3m+ i, i = 1, 2, . . . ,m− 1

For 1 ≤ i ≤ m− 1

f1(aibi+1) =

{
5m− i− 1 i ≡ 1 (mod 2)
6m− (i+ 2) i ≡ 0 (mod 2)

For 2 ≤ i ≤ m

f1(aibi−1) =

{
5m− i i ≡ 1 (mod 2)
6m− i− 1 i ≡ 0 (mod 2)

Using equation (1–4),

wtf1(C
(1)
i ) = (2⌈m

2
⌉+ 4i− 1) + (12m− 2)

= 2⌈m
2
⌉+ 12m− 2 + 4i

wtf1(C
(2)
i ) = (2⌈m

2
⌉+ 4i− 1) + ⌈8m+ 1

2
⌉+ (8m− 1)

= 2⌈m
2
⌉+ ⌈8m+ 1

2
⌉+ 8m+ 4i− 2

wtf1(C
(3)
i ) = (2⌈m

2
⌉+ 4i) + ⌈8m+ 1

2
⌉+ 8m

= 2⌈m
2
⌉+ ⌈8m+ 1

2
⌉+ 8m+ 4i

wtf1(C
(4)
i ) = (2⌈m

2
⌉+ 4i+ 1) + (12m− 1)

= 2⌈m
2
⌉+ 12m+ 4i

It is better to consider the C3-weights in the following order:

� C
(1)
i , i = 1, 2, . . . , ⌊m

2 ⌋

� C
(2)
i , i = 1, 2, . . . , ⌊m

2 ⌋

� C
(4)
i , i = 1, 2, . . . , ⌈m−1

2 ⌉

� C
(3)
i , i = 1, 2, . . . , ⌈m−1

2 ⌉

We can easily verify that the C3-weights for m ≡ 0 (mod 2) form the set:

{wtf1(C
(j)
3 )} = {13m+ 1 + j} j = 1, 2, . . . , 2m− 1 (5)

And for m ≡ 1 (mod 2) form the set:

{wtf1(C
(j)
3 )} = {13m+ 2 + j} j = 1, 2, . . . , 2m− 1 (6)

Thus the given labeling is a super (a, 1)-C3-antimagic labeling with an initial term a1 = 13m+ 2 and a common difference

d = 1.

Theorem 2.2. The zigzag-triangle ZT 2
m,m ≥ 2 possesses a super (ad, d)-C3-antimagic labeling for d ∈ {2, 3, 4, 7}.
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Proof. The total labeling fd is defined as:

fd(ai) =

{
i+1
2 i ≡ 1 (mod 2)⌈
3m
2

⌉
+ i

2 i ≡ 0 (mod 2)

fd(bi) =

⌊
n− 1

2

⌋
+ i+ 1, i = 1, 2, . . . ,m

fd(aiai+1) =

 2(m+ i) d = 2, 4
3m+ i d = 3
2(m+ 2i)− 1 d = 7

fd(aibi) =

 2(m+ i)− 1 d = 2, 4
2m+ i d = 3
2(m+ 2i)− 3 d = 7

For 1 ≤ i ≤ m− 1

fd(aibi+1) =

 2(3m− i− 1) d = 2
2(2m+ i)− 1 d = 3, 4
2(m+ 2i) d = 7

For 2 ≤ i ≤ m

fd(aibi−1) =


2(3m− i) + 1 d = 2
4(m− 1) + 2i d = 3
2(2m+ i)− 4 d = 4
2(m− 3 + 2i) d = 7

Using equation (1–4),

wtfd(C
(k)
i ) =



⌈ 3m
2 ⌉+ ⌊m−1

2 ⌋+ 2(5m+ 4i+ k − 3)

d = 2, k = 1, 2, 3, 4

⌈ 3m
2 ⌉+ ⌊m−1

2 ⌋+ 3(3m+ 4i+ k − 3)

d = 3, k = 1, 2, 3, 4

⌈ 3m
2 ⌉+ ⌊m−1

2 ⌋+ 4(2m+ k) + 16i− 13

d = 4, k = 1, 2, 3, 4

⌈ 3m
2 ⌉+ ⌊m−1

2 ⌋+ 2(3m+ 14i) + 7k − 25

d = 7, k = 1, 2, 3, 4

It is better to consider the C3-weights in the following order:

� C
(1)
i , i = 1, 2, . . . , ⌊m

2 ⌋

� C
(2)
i , i = 1, 2, . . . , ⌊m

2 ⌋

� C
(3)
i , i = 1, 2, . . . , ⌈m−1

2 ⌉

� C
(4)
i , i = 1, 2, . . . , ⌈m−1

2 ⌉

We can easily verify that the C
(j)
3 -weights for m ≡ 0 (mod 2) form the set:

wtfd(C
(j)
3 ) =



{12m+ 1 + 2j : 1 ≤ j ≤ 2(m− 1)}
d = 2

{11m+ 2 + 3j : 1 ≤ j ≤ 2(m− 1)}
d = 3

{2(5m+ 1 + 2j) : 1 ≤ j ≤ 2(m− 1)}
d = 4

{2(4m+ 1) + 7j : 1 ≤ j ≤ 2(m− 1)}
d = 7

(7)
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The C
(j)
3 -weights for m ≡ 1 (mod 2) form the set:

wtfd(C
(j)
3 ) =



{2(6m+ 1 + j) : 1 ≤ j ≤ 2(m− 1)}
d = 2

{11m+ 3(1 + j) : 1 ≤ j ≤ 2(m− 1)}
d = 3

{2(5m+ 2j) + 3 : 1 ≤ j ≤ 2(m− 1)}
d = 4

{8m+ 3 + 7j : 1 ≤ j ≤ 2(m− 1)}
d = 7

(8)

We can easily verify the C3-weights from equation (8) as:

a2 = 12m+ 2, and d = 2

a3 = 11m+ 3, and d = 3

a4 = 10m+ 3, and d = 4

a7 = 8m+ 3, and d = 7

and thus the given labelings are super (ad, d)-C3-antimagic labeling for differences d ∈ {2, 3, 4, 7}.

Theorem 2.3. The zigzag-triangle ZT 2
m,m ≥ 2 possesses a super (ad, d)-C3-antimagic labeling for d ∈ {5, 6, 8}.

Proof. For d ∈ {5, 6, 8} the total labeling fd is defined as:

fd(ai) =

 i i ≡ 0 (mod 2) ∀m
m− 1 + i i,m ≡ 0 (mod 2)
m+ i i ≡ 0, m ≡ 1 (mod 2)

fd(bi) = 2i, i = 1, 2, . . . ,m

fd(aiai+1) =

 2(m+ i) d = 5
2(2m+ i)− 1 d = 6
2(m+ 2i)− 1 d = 8

f1(aibi) =

{
2(m+ i)− 1 d = 5, 6
2m− 3 + 4i d = 8

For 1 ≤ i ≤ m− 1

fd(aibi+1) =

{
2(2m+ i)− 1 d = 5
2(m+ 2i) d = 6, 8

For 2 ≤ i ≤ m

fd(aibi−1) =

{
4(m− 1) + 2i d = 5
2(m− 3 + 2i) d = 6, 8

Using equation (1–4), for m ≡ 0 (mod 2)

wtfd(C
(k)
i ) =



3(3m− 6) + 5(4i+ k)

d = 5, k = 1, 2, 3, 4

3(3m+ 8i+ 2k)− 22

d = 6, k = 1, 2, 3, 4

7m− 30 + 8(4i+ k)

d = 8, k = 1, 2, 3, 4

Using equation (1–4), for m ≡ 1 (mod 2)

wtfd(C
(k)
i ) =



9m− 17 + 5(4i+ k)

d = 5, k = 1, 2, 3, 4

3[3m− 7 + 2(4i+ k)]

d = 6, k = 1, 2, 3, 4

7m− 29 + 8(4i+ k)

d = 8, k = 1, 2, 3, 4

It is better to consider the C3-weights in the following order:
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� C
(1)
i , i = 1, 2, . . . , ⌊m

2 ⌋

� C
(2)
i , i = 1, 2, . . . , ⌊m

2 ⌋

� C
(3)
i , i = 1, 2, . . . , ⌈m−1

2 ⌉

� C
(4)
i , i = 1, 2, . . . , ⌈m−1

2 ⌉

We can easily verify that the C
(j)
3 -weights for m ≡ 0 (mod 2) form the set:

wtfd(C
(j)
3 ) =



{9m+ 2 + 5j : 1 ≤ j ≤ 2(m− 1)}
d = 5

{9m+ 2 + 6j : 1 ≤ j ≤ 2(m− 1)}
d = 6

{7m+ 2 + 8j : 1 ≤ j ≤ 2(m− 1)}
d = 8

(9)

The C
(j)
3 -weights for m ≡ 1 (mod 2) form the set:

wtfd(C
(j)
3 ) =



{9m+ 3 + 5j : 1 ≤ j ≤ 2(m− 1)}
d = 5

{9m+ 3 + 6j : 1 ≤ j ≤ 2(m− 1)}
d = 6

{7m+ 3 + 8j : 1 ≤ j ≤ 2(m− 1)}
d = 8

(10)

From equations (9) and (10) we can easily verify that the C3-weights as:

a2 = 9m+ 3, and d = 5

a3 = 9m+ 3, and d = 6

a4 = 7m+ 3, and d = 8

and thus the given labelings are super (ad, d)-C3-antimagic labeling for differences d ∈ {5, 6, 8}.

3. Conclusion

In this manuscript, we provide information related to graphical representation and its usage to other fields: computer science,

chemistry, biology, operations research. We write several names and methods of graphical models and their computer

algorithms with sufficient references. The bridge between an efficient computer algorithm and graphical representation of

network is also defined and discussed in this article. We prove results for a Γ′-antimagic covering of a family zig-zag triangles

for differences d ∈ {1, 2, . . . , 8}. One can derive results for further differences as well as an efficient computer algorithm

based on the Γ′-covering of zig-zag triangle to support ones research in theoretical computer sciences.
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