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Abstract

The general path sum connectivity index of a molecular graph, denoted as tχα(G), is defined for a graph G, where α is
a positive real number and t is a positive integer. This index is expressed as:

tχα(G) =
∑

pt=vj1vj2 ...vjt+1
⊆G

[
dG(vj1) + dG(vj2) + · · ·+ dG(vjt+1)

]α
,

where pt represents a path of length t within the graph. In this work, we compute the general path sum connectivity
index for various nanostructures, including phenylene, naphthalene, anthracene, and tetracene nanotubes. This index is
particularly useful in investigating the physico-chemical properties of chemical compounds and plays a crucial role in the
analysis of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular chirality.

Keywords: graph energy, The general (α, t) path connectivity index, degree based topological index phenylenic,
Naphatalenic, Anthracene and Tetracenic nanotubes

1. Introduction

Graph theory is an integral branch of mathematics with widespread applications across various scientific fields, including

chemistry, physics, medicine, and engineering. Its relevance is particularly evident in areas that involve complex systems and

interactions, where graph models provide a structured framework to analyze relationships and connections. In chemistry, for

instance, molecular structures can be effectively modeled as graphs, where atoms represent the vertices and bonds between

atoms represent the edges. By leveraging mathematical tools and concepts from graph theory, researchers can gain deeper

insights into the behavior and properties of molecules, aiding in the understanding of chemical reactions and molecular

stability.

One of the most notable applications of graph theory in chemistry is the use of topological indices or descriptors. These

are numerical values derived from the structure of a molecular graph that correlate strongly with various physio-chemical

properties of the compounds they represent. Topological indices have been shown to have significant predictive power when

it comes to properties such as boiling point, melting point, bond energy, and molecular size. By applying different graph-

theoretical approaches, researchers can derive a variety of indices, each of which emphasizes different structural features of

the molecular graph. Some of the most widely used indices include the Randic Connectivity Index [1], the Sum Connectivity

Index [2, 3], and the first and second Zagreb Indices [4–10].

The Randic Connectivity Index, one of the pioneering topological indices, measures the branching of a molecular

structure and is used to predict the molecular stability and reactivity of hydrocarbons. Similarly, the Sum Connectivity

Index and the Zagreb Indices provide different perspectives on molecular structure, considering factors such as vertex

degrees and edge contributions. These indices are invaluable tools in quantitative structure-property relationships (QSPR)

and quantitative structure-activity relationships (QSAR), which are techniques used to predict the properties or activities

of chemical compounds based on their molecular structure.

The application of topological indices extends beyond theoretical predictions. In practical terms, they have been

instrumental in areas such as drug discovery and the development of new materials. In the pharmaceutical industry, for

example, QSAR models that utilize topological indices help researchers identify potential drug candidates by analyzing

molecular structures and predicting their biological activities. This approach accelerates the process of drug development

by providing a cost-effective and time-efficient method for screening large libraries of compounds.

Additionally, topological indices have been used to predict a range of physio-chemical properties such as enthalpy

changes, entropy, and heat capacity, making them essential in fields like thermodynamics and material science. By providing

quantitative measures that are invariant under graph isomorphisms, these indices allow researchers to compare and classify
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molecules based on their structural properties, leading to more targeted experiments and innovations in material design.

The robustness and versatility of topological indices continue to make them a focal point in the study of molecular graphs.

In this work, we focus on extending the use of graph-theoretical indices by computing the general path sum connectivity

index for several nanostructures, including phenylene, naphthalene, anthracene, and tetracene nanotubes. These nanostruc-

tures are of particular interest due to their unique properties and applications in nanotechnology, electronics, and materials

science. By applying the general path sum connectivity index to these structures, we aim to provide new insights into their

physio-chemical properties, contributing to a deeper understanding of their behavior and potential applications in various

scientific and industrial domains.

2. Results and Discussion

In graph theory, a graph G is defined by its vertices V (G) and edges E(G). For molecular graphs, atoms are represented

by vertices, while chemical bonds are modeled by edges. In 1947, chemist Harold Wiener introduced the Wiener index

W (G) [11], which is given by:

W (G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d(u, v),

where d(u, v) represents the topological distance between any two atoms in the molecular graph. The Wiener index has

significant applications in chemistry and was used to analyze trees in [13]. In 1988, Haruo Hosoya introduced the Hosoya

polynomial for molecular graphs [12]:

H(G, x) =
1

2

∑
u∈V (G)

∑
v∈V (G)

xd(u,v).

This polynomial is based on topological distances between vertices. In 2001, the Wiener index of trees was further

investigated [13]. Another influential polynomial, introduced by Deutsch and Klavžar in 2015, is the M-polynomial, which

plays a crucial role in topological analysis [14]:

M(G, x, y) =
∑

δ≤i≤j≤∆

mij(G)xiyj ,

where δ and ∆ are the minimum and maximum degrees of vertices in G. Additionally, the Zagreb indices, introduced by

Gutman and Trinajstić, see [4–10], are defined as follows:

- First Zagreb index Zg1(G):

Zg1(G) =
∑

uv∈E(G)

(du + dv).

- Second Zagreb index Zg2(G):

Zg2(G) =
∑

uv∈E(G)

(du × dv).

In 1975, Milan Randić introduced the Randić Connectivity Index [1], a degree-based molecular descriptor:

χ(G) =
∑

e=uv∈E(G)

1√
dudv

.

Its generalized version, introduced by Bollobás and Amic, see [15] is given by:

Rα(G) =
∑

uv∈E(G)

1

dudαv
.

The Randić index has widespread applications in drug discovery. The Sum Connectivity Index [2, 3] is defined as:

χ(G) =
∑

uv∈E(G)

1√
du + dv

.

This concept was generalized by Wang and introduced the General Sum Connectivity Index [16]:

χα(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]
α
.

Wang further extended this concept to the context of (α, t)-path sum connectivity indices, defined as:
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tχα(G) =
∑

pt=vj1vj2 ...vjt+1
⊆G

[
dG(vj1) + dG(vj2) + · · ·+ dG(vjt+1

)
]α

.

In 2017, M-polynomials and topological indices for V-phenylenic nanotubes and nanotori were investigated in [17]. These

compounds, consisting of C4, C6, and C8 nets, have been extensively studied, including vertex P1 indices [18], GA indices

[19], and eccentricity indices [20]. In March 2019, Sunantha et al. [21] proposed degree-based multiplicative connectivity

indices for nanostructures. In this work, we compute the α, t-general path sum connectivity index for various nanotubes

such as phenylenic, naphthalene, anthracene, and tetracene, which are highly relevant in the field of nanotechnology.

2.1 Results for V-phenylenic Nanotube

The V-phenylenic nanotube is denoted by V PHX(m,n), where m and n represent the number of hexagons in the first row

and first column, respectively.

Lemma 2.1. There are two types of vertices with degrees 2 and 3 in V PHX(m,n). The vertex and edge cardinalities are

given by:

|V (H1)| = 6mn, |E(H1)| = 9mn−m.

The vertex set of H1 is partitioned into two subsets: one containing edges m23 (connecting vertices of degrees 2 and 3)

and the other containing edges m33 (connecting vertices of degree 3).

Degree of Vertices Number of Vertices Type of Edge Number of Edges
2 2m (2, 3) 4m
3 6mn− 2m (3, 3) 9mn− 5m

Table 1: Vertex and edge partition details of V PHX(m,n)

Theorem 2.2. For any real number α, the general (α, 2)-path sum connectivity index of V PHX(m,n) is given by:

χ2
α(V PHX(m,n)) = 2m

[
9n× 32α + 5× 23α + 7× 32α

]
.

Proof. There are two types of edges in V PHX(m,n): (2, 3)-edges and (3, 3)-edges. First, we calculate the total number

of possible 2-paths, represented by N(p2). For any (2, 3)-edge, there are 3 different paths containing this edge. With 4m

such edges, the total number of 2-paths containing this edge is 4m × 3 = 12m. Similarly, for any (3, 3)-edge, there are 4

different paths containing this edge, and with m(9n− 5) such edges, the total number of 2-paths is 4×m(9n− 5).

By calculating and combining the paths, we derive the expression for χ2
α(V PHX(m,n)).

Theorem 2.3. For V-phenylenic nanotube V PHX(m,n), the general sum connectivity index χ2
α(V PHX(m,n)) is strictly

increasing with respect to positive integers m and n, and for any real number α.

Proof. It is clear that χ2
α(V PHX(m,n)) is strictly increasing with respect to m and n. By increasing m and n, the value

of the index increases.

Theorem 2.4. For V-Naphatalanic Nanotubes, NPHX(m,n), the general sum connectivity index 2χα(m,n) is strictly

increasing with respect to positive integers m and n for any real number α.

Proof. Let us find the values of m and n where the value of 2χα(NPHX(m,n)) = 0.

2m[7α + (8)α+1 + (15n− 13)9α] = 0

so, m = 0, and

9α[15n− 13 +
7α+ 8α+1

9α
] = 0

15n = 13− 7α + (8)α+1

9α

n =
13

15
− 7α + (8)α+1

15 · 9α

n =
13

15

(
1− 1

13
· 7

α + (8)α+1

9α

)
.
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Degree of Vertices Number of Vertices Type of Edge No of Edges
2 6m (2, 3) 12m
3 14mn− 6m (3, 3) 21mn− 15m

Table 2: Table 3: Vertex and edge partition of ATHX(m,n).

Since n < 13
15 , but n is a positive integer, n = 0. Hence, at m = 0 and n = 0, this index vanishes, which shows that

2χα(NPHX(m,n)) is strictly increasing with m and n. Its minimum value is obtained by setting m = n = 2, and this

minimum value is

4[7α + (8)α+1 + 17 · 9α].

3. Results for V -Anthracene Nanotubes (VA)

Let this structure be represented by ATHX(m,n) = H3, where m and n represent the number of pairs of hexagons in the

first row and column, respectively.

Lemma 3.1. The total number of vertices is 14mn, and the total number of edges is 21mn− 3m in ATHX(m,n), where

m,n > 1.

Theorem 3.2. For any real number α, the general (α, 2)-path sum connectivity index of ATHX(m,n) is given by

2χα(ATHX(m,n)) = 2m[11(8α) + 2(7)α + (21n− 19)9α].

Proof. There are two types of edges in ATHX(m,n): (2, 3) edge e and (3, 3) edge e′. First, we calculate the total number

of possible 2-paths, represented by N(p2). Consider any (2, 3) edge e. As per the structure of ATHX(m,n), there are 3

different paths containing this edge. Since there are 12m such edges, we conclude there are 12 × 3 = 36m such 2-paths

containing this edge.

Next, take any (3, 3) edge e′. By analyzing the structure of ATHX(m,n), we find that there are 4 paths containing

this edge. Since there are (21mn − 15m) such edges, in total there are 4 × (21mn − 15m) such 2-paths. Since the paths

Vj1Vj2 −−Vjt+1 and Vjt+1 ...Vj2Vj1 represent identical paths, such paths are counted twice. Thus,

N(p2) =
4× (21mn− 15m) + 3× 12m

2

=
84mn− 24m

2
= 42mn− 12m.

There are four possible degree sequences of 2-edge paths: (2, 3, 3), (3, 2, 3), (3, 3, 3), and (2, 3, 2). We calculate P233 +

P323 + P333 + P232 = N(p2), where Pabc represents the number of two-edge paths passing through vertices of degrees a, b,

and c.

For the path sequence (2, 3, 3), which begins or ends with a vertex of degree 2, there are 6m such vertices. Out of these,

4m vertices produce 3 different paths, and 2m vertices produce 2 different paths. Thus, there are P233 = 16m such paths.

Similarly, P232 = 4m, and P323 = 6m.

Finally, the number of paths with the degree sequence (3, 3, 3) is given by:

P333 = N(p2)− (P233 + P323 + P232)

= 42mn− 12m− (16m+ 4m+ 6m)

= 42mn− 38m.

By the definition of the general (α, 2)-path sum connectivity index,

2χα(ATHX(m,n)) =
∑

P 2=Vj1
Vj2

Vj3
⊆H3

(dH3(Vj1) + dH3(Vj2) + dH3(Vj3))
α

= P232(2 + 3 + 2)α + P233(2 + 3 + 3)α + P323(3 + 2 + 3)α + P333(3 + 3 + 3)α

= 4m(7)α + 16m(8)α + 6m(8)α + (42mn− 38m)9α

= 4m(7)α + 22m(8)α + (42mn− 38m)9α

= 2m[11(8)α + 2(7)α + (21n− 19)9α].

27



Theorem 3.3. For V -Anthracene Nanotubes (VA), the general sum connectivity index 2χα(ATHX(m,n)) is strictly in-

creasing with respect to positive integers m and n for any real number α.

Proof. Let us find the values of m and n where the value of 2χα(ATHX(m,n)) = 0.

2m[11(8)α + 2(7)α + (21n− 19)9α] = 0

so, m = 0, and

21n = 19− 2(7)α + 11(8)α

9α
,

n =
19

21
− 2(7)α + 11(8)α

21 · 9α
.

Since n < 19
21 , but n is a positive integer, n = 0. Hence, at m = 0 and n = 0, this index vanishes, which shows that

2χα(ATHX(m,n)) is strictly increasing with m and n. Its minimum value is obtained by setting m = n = 2, and this

minimum value is

4[11(8)α + 2(7)α + 23(9)α].

4. Conclusion

In this work, we studied the general (α, 2)-path sum connectivity index for some nanostructures, and derived their respective

formulas. These results can facilitate investigations in nanoscience, pharmacy, and biochemistry.
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[1] Milan, R. (2008). ”On history of the Randić index and emerging hostility toward chemical graph theory.” MATCH Commun. Math. Comput.
Chem 59 (1), 5-124.
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[16] Wang, H., Liu, J. B., Wang, S., Gao, W., Akhter, S., Imran, M., & Farahani, M. R. (2017). Sharp Bounds for the General Sum-Connectivity

Indices of Transformation Graphs. Discrete Dynamics in Nature and Society, 2017 (1), 2941615.
[17] Kwun, Y. C., Munir, M., Nazeer, W., Rafique, S., & Min Kang, S. (2017). M-Polynomials and topological indices of V-Phenylenic Nanotubes

and Nanotori. Scientific reports, 7 (1), 8756.
[18] Yousefi, H., Bahrami, A., Yazdani, J., & Ashrafi, A. R. (2007). PI index of V-phenylenic nanotubes and nanotori. Journal of Computational

and Theoretical Nanoscience, 4 (3), 604-605.
[19] Farahani, M. R. (2013). Computing GA5 index of V-phenylenic nanotubes and nanotori. Int. J. Chem Model, 5 (4), 479-484.
[20] Rao, N. P., & Lakshmi, K. L. (2010). Eccentric connectivity index of V-phenylenic nanotubes. Digest Journal of Nanomaterials and

Biostructures, 6 (1), 81-87.
[21] Sunantha, S., & Gayathri, P. (2019). Degree based multiplicative connectivity indices of nanostructures. Mathematical Journal of Interdis-

ciplinary Sciences, 7 (2), 149-155.

28


